{"title":"Enabling coastal analytics at planetary scale","authors":"Floris Reinier Calkoen, Arjen Pieter Luijendijk, Kilian Vos, Etiënne Kras, Fedor Baart","doi":"10.1016/j.envsoft.2024.106257","DOIUrl":null,"url":null,"abstract":"Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"42 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106257","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal science has entered a new era of data-driven research, facilitated by satellite data and cloud computing. Despite its potential, the coastal community has yet to fully capitalize on these advancements due to a lack of tailored data, tools, and models. This paper demonstrates how cloud technology can advance coastal analytics at scale. We introduce GCTS, a novel foundational dataset comprising over 11 million coastal transects at 100-m resolution. Our experiments highlight the importance of cloud-optimized data formats, geospatial sorting, and metadata-driven data retrieval. By leveraging cloud technology, we achieve up to 700 times faster performance for tasks like coastal waterline mapping. A case study reveals that 33% of the world’s first kilometer of coast is below 5 m, with the entire analysis completed in a few hours. Our findings make a compelling case for the coastal community to start producing data, tools, and models suitable for scalable coastal analytics.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.