Junhao Wu , Xi Chen , Jinghan Dong , Nen Tan , Xiaoping Liu , Antonis Chatzipavlis , Philip LH. Yu , Adonis Velegrakis , Yining Wang , Yonggui Huang , Heqin Cheng , Diankai Wang
{"title":"Dissolved oxygen prediction in the Dianchi River basin with explainable artificial intelligence based on physical prior knowledge","authors":"Junhao Wu , Xi Chen , Jinghan Dong , Nen Tan , Xiaoping Liu , Antonis Chatzipavlis , Philip LH. Yu , Adonis Velegrakis , Yining Wang , Yonggui Huang , Heqin Cheng , Diankai Wang","doi":"10.1016/j.envsoft.2025.106412","DOIUrl":null,"url":null,"abstract":"<div><div>Dissolved oxygen (DO) is a critical parameter for monitoring water quality. However, most existing deep learning models have overlooked the physical relationship between DO and other parameters during simulation, leading to simulated values that deviate from the actual physical laws. Moreover, the inherent opacity of deep learning models restricts their applicability. Here, we propose the prior knowledge-constrained bidirectional long short-term memory network (PKBiLSTM) model to simulate DO levels in the Dianchi Lake basin. Our results show that the PKBiLSTM model achieves an average Kling-Gupta efficiency coefficient (KGE) of 0.926, which represents a 3.35% and 2.38% increase compared to the gated recurrent unit (GRU) and categorical boosting (CatBoost) models, respectively. The experiments reveal that pH has the greatest effect on DO concentration within the range of 6.5–10. Furthermore, the primary factors affecting DO exhibit seasonal differences. The findings underscore the potential of our method to enhance the scientific management of watersheds.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106412"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000969","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved oxygen (DO) is a critical parameter for monitoring water quality. However, most existing deep learning models have overlooked the physical relationship between DO and other parameters during simulation, leading to simulated values that deviate from the actual physical laws. Moreover, the inherent opacity of deep learning models restricts their applicability. Here, we propose the prior knowledge-constrained bidirectional long short-term memory network (PKBiLSTM) model to simulate DO levels in the Dianchi Lake basin. Our results show that the PKBiLSTM model achieves an average Kling-Gupta efficiency coefficient (KGE) of 0.926, which represents a 3.35% and 2.38% increase compared to the gated recurrent unit (GRU) and categorical boosting (CatBoost) models, respectively. The experiments reveal that pH has the greatest effect on DO concentration within the range of 6.5–10. Furthermore, the primary factors affecting DO exhibit seasonal differences. The findings underscore the potential of our method to enhance the scientific management of watersheds.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.