Effects of strain rate, temperature and microstructure on mechanical properties of (CoCrNi)94Al3Ti3 medium-entropy alloy: Experiments and constitutive modeling
R.C. Pan, C.H. Mi, P.F. Han, N.B. Zhang, Y. Cai, L. Lu, S.N. Luo
{"title":"Effects of strain rate, temperature and microstructure on mechanical properties of (CoCrNi)94Al3Ti3 medium-entropy alloy: Experiments and constitutive modeling","authors":"R.C. Pan, C.H. Mi, P.F. Han, N.B. Zhang, Y. Cai, L. Lu, S.N. Luo","doi":"10.1016/j.jallcom.2024.177551","DOIUrl":null,"url":null,"abstract":"Mechanical properties and microstructure evolution of as-cast, solution-treated and aged (CoCrNi)<sub>94</sub>Al<sub>3</sub>Ti<sub>3</sub> medium-entropy alloys (MEAs) are investigated under uniaxial compression at strain rates from 10<sup>−3</sup> to 3700 s<sup>−1</sup> within temperatures from 123 to 573 K. Compared to the single-phase solution-treated MEA, spherical nanosized particles result in an increase in the yield stress approximately by 55% (to 586 MPa) and 73% (to 655 MPa) for the as-cast and aged (CoCrNi)<sub>94</sub>Al<sub>3</sub>Ti<sub>3</sub>, respectively. At ambient temperature, the as-cast and aged alloys demonstrate significantly higher dynamic strain rate sensitivity. At a fixed strain rate, the yield strengths and flow stresses increase with decreasing temperature for all three alloys. The as-cast and aged alloys exhibit significantly higher yield strength primarily due to precipitation strengthening of the coherent ordered L1<sub>2</sub> precipitates. Dislocation slip dominates the plastic deformation and leads to the weak but apparent ⟨110⟩ texture along the loading direction, and no deformation twins are observed in all alloys. Besides, Khan-Liu constitutive models are developed and can well describe the plastic flow of three alloys over a wide range of strain rates and temperatures.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"230 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177551","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical properties and microstructure evolution of as-cast, solution-treated and aged (CoCrNi)94Al3Ti3 medium-entropy alloys (MEAs) are investigated under uniaxial compression at strain rates from 10−3 to 3700 s−1 within temperatures from 123 to 573 K. Compared to the single-phase solution-treated MEA, spherical nanosized particles result in an increase in the yield stress approximately by 55% (to 586 MPa) and 73% (to 655 MPa) for the as-cast and aged (CoCrNi)94Al3Ti3, respectively. At ambient temperature, the as-cast and aged alloys demonstrate significantly higher dynamic strain rate sensitivity. At a fixed strain rate, the yield strengths and flow stresses increase with decreasing temperature for all three alloys. The as-cast and aged alloys exhibit significantly higher yield strength primarily due to precipitation strengthening of the coherent ordered L12 precipitates. Dislocation slip dominates the plastic deformation and leads to the weak but apparent ⟨110⟩ texture along the loading direction, and no deformation twins are observed in all alloys. Besides, Khan-Liu constitutive models are developed and can well describe the plastic flow of three alloys over a wide range of strain rates and temperatures.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.