Enhanced energy storage performance of Mn-doped NBT-based flexible films by defect engineering

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-27 DOI:10.1016/j.jallcom.2024.177811
Lei Ning, Xia Luo, Ningning Sun, Yong Li, Pei Han, Xiaowei Li, Xihong Hao
{"title":"Enhanced energy storage performance of Mn-doped NBT-based flexible films by defect engineering","authors":"Lei Ning, Xia Luo, Ningning Sun, Yong Li, Pei Han, Xiaowei Li, Xihong Hao","doi":"10.1016/j.jallcom.2024.177811","DOIUrl":null,"url":null,"abstract":"The rapid development of advanced flexible electronics leads to higher demands on the energy storage performance and spatial adaptability of capacitors. Here, Mn<sup>2+</sup> is doped into 0.6(Na<sub>0.5</sub>Bi<sub>0.5</sub>)TiO<sub>3</sub>-0.4Bi(Mg<sub>0.5</sub>Zr<sub>0.5</sub>)O<sub>3</sub> (0.6NBT-0.4BMZ), which effectively reduces the carrier content by forming defective complexes through the bonding of Mn<sup>2+</sup> with oxygen vacancies, while maintaining a relatively high polarizability and enhancing the breakdown strength. The optimal storage performance is demonstrated by the 0.6NBT-0.4BMZ film with a Mn doping amount of 1<!-- --> <!-- -->mol%. The observed breakdown strength, storage density, and storage efficiency are 2,900<!-- --> <!-- -->kV/cm, 60.2<!-- --> <!-- -->J/cm<sup>3</sup>, and 60.3%, respectively. Furthermore, the films exhibit excellent stability in various temperature ranges (25~205 ℃), frequencies (1~5<!-- --> <!-- -->kHz), fatigue tests (at 10<sup>7</sup> charge/discharge cycles), and bending resistance tests (20,000 cycles/radius R ≈ 2<!-- --> <!-- -->mm). These results indicate that NBT-based film materials hold great promise for future flexible energy storage applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"129 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of advanced flexible electronics leads to higher demands on the energy storage performance and spatial adaptability of capacitors. Here, Mn2+ is doped into 0.6(Na0.5Bi0.5)TiO3-0.4Bi(Mg0.5Zr0.5)O3 (0.6NBT-0.4BMZ), which effectively reduces the carrier content by forming defective complexes through the bonding of Mn2+ with oxygen vacancies, while maintaining a relatively high polarizability and enhancing the breakdown strength. The optimal storage performance is demonstrated by the 0.6NBT-0.4BMZ film with a Mn doping amount of 1 mol%. The observed breakdown strength, storage density, and storage efficiency are 2,900 kV/cm, 60.2 J/cm3, and 60.3%, respectively. Furthermore, the films exhibit excellent stability in various temperature ranges (25~205 ℃), frequencies (1~5 kHz), fatigue tests (at 107 charge/discharge cycles), and bending resistance tests (20,000 cycles/radius R ≈ 2 mm). These results indicate that NBT-based film materials hold great promise for future flexible energy storage applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Advancements in Magnetic Nanoparticle Design: SiO2@Fe3O4 Core/Shell Nanoparticles with Size-Tunable Magnetic Responses Precise Control of Metal-Insulator Transition Temperature in La-Substituted La0.7Ca0.3MnO3 via Ionic Radius Tuning Enhancing low temperature properties through nano-structured lithium iron phosphate and solid liquid interface control by LATP Enhanced energy storage performance of Mn-doped NBT-based flexible films by defect engineering Effect of the synergistic effect of Cr and Mo on the solidification microstructure and mechanical properties of NiAl-based high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1