Manganese oxidation states and availability in forest weathering profiles of contrasting climate

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2024-10-14 DOI:10.1016/j.gca.2024.10.006
Zhuojun Zhang, Peng Yang, Ke Wen, Hai-Ruo Mao, Zhiqi Zhao, Congqiang Liu, Qing Zhu, Mengqiang Zhu
{"title":"Manganese oxidation states and availability in forest weathering profiles of contrasting climate","authors":"Zhuojun Zhang, Peng Yang, Ke Wen, Hai-Ruo Mao, Zhiqi Zhao, Congqiang Liu, Qing Zhu, Mengqiang Zhu","doi":"10.1016/j.gca.2024.10.006","DOIUrl":null,"url":null,"abstract":"The abundance and oxidation states (II, III and IV) of manganese (Mn) in a weathering profile encompassing both the soil layers (A and B horizons) and the underlaid saprolite (C horizons) determine the availability of Mn as a plant nutrient and regulate its role in cycles of other elements in Earth’s critical zone. However, it remains unclear how the abundance and oxidation states vary with depth under different climates, and how the soil forming processes and soil properties control the variations. We examined four forest granite weathering profiles developed under climates ranging from temperate to tropical climate. Regardless of climate types, all four profiles showed similar vertical variation patterns of Mn concentration and oxidation states. The major features of the patterns can be understood from the perspective of soil forming processes and soil properties. Climate affected the Mn oxidation states in the fine fraction (&lt; 2 mm; i.e., the soil fraction) of the poorly weathered saprolite by controlling the weathering degree of Mn-bearing primary minerals. The weathering released Mn(II) and Mn(III) in the primary minerals to the circumneutral environment where it was subsequently oxidized by O<ce:inf loc=\"post\">2</ce:inf>. In contrast, climate affected the Mn oxidation states in the soil layers poor in parent materials largely by controlling soil redox conditions and pH because most of the Mn in soils was reactive. As the climate became warmer/wetter, the weathering intensified and soils became more reducing and acidic, resulting in more reduced Mn in the soil layers but more oxidized Mn in the fine fraction of saprolite. Moreover, relative to Mn(II) and Mn(IV), Mn(III) preferentially accumulated in the subsoil (B horizons), likely as Mn(III) oxyhydroxides in the colder and drier climates, and as a substitute ion in well-crystallized Fe(III) oxides in the warmer and wetter climates. These findings improve our understanding of Mn availability and cycling and its role in biogeochemical cycles of other elements in Earth’s critical zone.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"14 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.10.006","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The abundance and oxidation states (II, III and IV) of manganese (Mn) in a weathering profile encompassing both the soil layers (A and B horizons) and the underlaid saprolite (C horizons) determine the availability of Mn as a plant nutrient and regulate its role in cycles of other elements in Earth’s critical zone. However, it remains unclear how the abundance and oxidation states vary with depth under different climates, and how the soil forming processes and soil properties control the variations. We examined four forest granite weathering profiles developed under climates ranging from temperate to tropical climate. Regardless of climate types, all four profiles showed similar vertical variation patterns of Mn concentration and oxidation states. The major features of the patterns can be understood from the perspective of soil forming processes and soil properties. Climate affected the Mn oxidation states in the fine fraction (< 2 mm; i.e., the soil fraction) of the poorly weathered saprolite by controlling the weathering degree of Mn-bearing primary minerals. The weathering released Mn(II) and Mn(III) in the primary minerals to the circumneutral environment where it was subsequently oxidized by O2. In contrast, climate affected the Mn oxidation states in the soil layers poor in parent materials largely by controlling soil redox conditions and pH because most of the Mn in soils was reactive. As the climate became warmer/wetter, the weathering intensified and soils became more reducing and acidic, resulting in more reduced Mn in the soil layers but more oxidized Mn in the fine fraction of saprolite. Moreover, relative to Mn(II) and Mn(IV), Mn(III) preferentially accumulated in the subsoil (B horizons), likely as Mn(III) oxyhydroxides in the colder and drier climates, and as a substitute ion in well-crystallized Fe(III) oxides in the warmer and wetter climates. These findings improve our understanding of Mn availability and cycling and its role in biogeochemical cycles of other elements in Earth’s critical zone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候截然不同的森林风化剖面中的锰氧化态和可用性
锰(Mn)在风化剖面中的丰度和氧化态(II、III 和 IV)决定了锰作为植物养分的可用性,并调节着锰在地球临界区其他元素循环中的作用。然而,目前仍不清楚在不同气候条件下,锰的丰度和氧化状态是如何随深度变化的,以及土壤形成过程和土壤特性是如何控制这些变化的。我们研究了从温带气候到热带气候的四种森林花岗岩风化剖面。无论气候类型如何,所有四个剖面都显示出类似的锰浓度和氧化态垂直变化规律。从土壤形成过程和土壤特性的角度可以理解这些模式的主要特征。气候通过控制含锰原生矿物质的风化程度,影响了贫风化硅质岩细粒(2 毫米,即土壤部分)中的锰氧化态。风化将原生矿物中的锰(II)和锰(III)释放到中性环境中,随后被氧气氧化。与此相反,气候主要通过控制土壤氧化还原条件和 pH 值来影响贫瘠母质土层中的锰氧化状态,因为土壤中的大部分锰都是活性锰。随着气候变得更加温暖/湿润,风化加剧,土壤变得更具还原性和酸性,导致土层中的还原锰更多,而细粒皂石中的氧化锰更多。此外,与 Mn(II) 和 Mn(IV) 相比,Mn(III) 更倾向于积聚在底土(B 层)中,在寒冷干燥的气候条件下可能以 Mn(III) 氧氢氧化物的形式积聚,而在温暖湿润的气候条件下则以结晶良好的 Fe(III) 氧化物中的替代离子形式积聚。这些发现加深了我们对锰的可用性和循环及其在地球临界区其他元素的生物地球化学循环中的作用的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Association of tungsten with aluminosilicate mineral colloids and silicotungstates in soil porewaters: Insights into the unexpectedly high tungsten mobility in soil Submicron-sized anhydrous crystalline silicates and their relation to amorphous silicate in the matrix of Acfer 094 Fe-isotopic evidence for hydrothermal reworking as a mechanism to form high-grade Fe-Ti-V oxide ores in layered intrusions Copper isotopic evidence of microbial gold fixation in the Mesoarchean Witwatersrand Basin The geochronology and cooling history of type 7 chondrites: Insights into the early impact events on chondritic parent body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1