{"title":"Assessing the validity and limits of linear density models for predicting dissociation–association equilibria in supercritical water","authors":"Maximilian Schulze, Thomas Driesner, Sandro Jahn","doi":"10.1016/j.gca.2024.10.008","DOIUrl":null,"url":null,"abstract":"A linear relationship between the logarithms of solute dissociation constants, <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, and the density of water, <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mo>log</mml:mo></mml:math> (<mml:math altimg=\"si274.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi></mml:mrow></mml:msub></mml:math>), has empirically been demonstrated for decades and raised hope for an universal formalism to describe solute thermodynamic properties over wide ranges of temperature and density at supercritical conditions. Yet, neither a theoretical foundation nor an assessment of the ranges of validity have been presented. Here, we use classical molecular dynamics (MD) simulations as a complementary tool to assess the validity of this linear relationship for the example of NaCl and reveal its limits at water densities below ca. 0.3<ce:hsp sp=\"0.16667\"></ce:hsp>g<ce:hsp sp=\"0.16667\"></ce:hsp>cm<ce:sup loc=\"post\">−3</ce:sup>. The derivative <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>∂</mml:mi><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mi>∂</mml:mi><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> is calculated based on the volume of reaction and water compressibility derived from the simulations performed in the isothermal–isobaric ensemble at 673<ce:hsp sp=\"0.16667\"></ce:hsp>K. Our results corroborate the linear dependence of <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> vs. <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in the experimentally studied density range and suggest that the linear dependence also extends to higher densities. However, towards lower densities, <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> decreases and takes on values that are lower than would be expected by simply extrapolating the linear behavior. This decrease is consistent with earlier theoretical predictions for the behavior of <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> at vapor-like densities but questions the relevance of some indirect experimental evidence obtained at low temperatures. Although the function described by <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> vs <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mo>log</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> is non-linear in the low density range, it can be considered well-behaved even at near critical conditions.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"15 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.10.008","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A linear relationship between the logarithms of solute dissociation constants, log(K), and the density of water, log (ρH2O), has empirically been demonstrated for decades and raised hope for an universal formalism to describe solute thermodynamic properties over wide ranges of temperature and density at supercritical conditions. Yet, neither a theoretical foundation nor an assessment of the ranges of validity have been presented. Here, we use classical molecular dynamics (MD) simulations as a complementary tool to assess the validity of this linear relationship for the example of NaCl and reveal its limits at water densities below ca. 0.3gcm−3. The derivative ∂log(K)/∂log(ρH2O) is calculated based on the volume of reaction and water compressibility derived from the simulations performed in the isothermal–isobaric ensemble at 673K. Our results corroborate the linear dependence of log(K) vs. log(ρH2O) in the experimentally studied density range and suggest that the linear dependence also extends to higher densities. However, towards lower densities, log(K) decreases and takes on values that are lower than would be expected by simply extrapolating the linear behavior. This decrease is consistent with earlier theoretical predictions for the behavior of log(K) at vapor-like densities but questions the relevance of some indirect experimental evidence obtained at low temperatures. Although the function described by log(K) vs log(ρH2O) is non-linear in the low density range, it can be considered well-behaved even at near critical conditions.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.