{"title":"Controllable Structure Design of an Organic Gel-Infused Porous Surface for Efficient Anti- and De-icing","authors":"Weiming Lin, Haonan Song, Huimin Qi, Xingshi Gu, Ding Zhang, Jiaxin Yu, Yafeng Zhang, Gai Zhao","doi":"10.1021/acs.langmuir.4c04110","DOIUrl":null,"url":null,"abstract":"Icing causes many problems in daily life and with equipment stability, and many efforts have been made to remove surface icing. Herein, a novel organic gel-infused porous material is developed to achieve excellent de-icing performance. Porous polydimethylsiloxane (P-PDMS) composites with different pore sizes were prepared by a template method. The two-phase skeletons and/or gel material was obtained by infusing PDMS gel into P-PDMS (GIP-PDMS). The ice adhesion strength of GIP-PDMS under static and dynamic icing conditions was comparatively investigated. The results show that GIP-PDMS displayed excellent anti-icing performance, and the delay freezing time of GIP-PDMS1 was ∼4554 s at −5 °C. The ice adhesion strength of GIP-PDMS was much lower than that of P-PDMS, owing to the distinct modulus between the two-phase skeletons and/or gel. The simulation results indicated that the stress concentration promoted ice fracture and contributed to weak ice adhesion. Molecular dynamics further showed that the state of the molecular chains and the interfacial interaction between ice and PDMS gel at 268 K helped to decrease the shear force.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"15 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04110","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Icing causes many problems in daily life and with equipment stability, and many efforts have been made to remove surface icing. Herein, a novel organic gel-infused porous material is developed to achieve excellent de-icing performance. Porous polydimethylsiloxane (P-PDMS) composites with different pore sizes were prepared by a template method. The two-phase skeletons and/or gel material was obtained by infusing PDMS gel into P-PDMS (GIP-PDMS). The ice adhesion strength of GIP-PDMS under static and dynamic icing conditions was comparatively investigated. The results show that GIP-PDMS displayed excellent anti-icing performance, and the delay freezing time of GIP-PDMS1 was ∼4554 s at −5 °C. The ice adhesion strength of GIP-PDMS was much lower than that of P-PDMS, owing to the distinct modulus between the two-phase skeletons and/or gel. The simulation results indicated that the stress concentration promoted ice fracture and contributed to weak ice adhesion. Molecular dynamics further showed that the state of the molecular chains and the interfacial interaction between ice and PDMS gel at 268 K helped to decrease the shear force.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).