{"title":"Enhancing Efficiency, Stability, and Cycle Life of Lithium Metal Electrodeposition in Dry Solid-State Polymer Electrolytes","authors":"Idan Bar-lev, Keren Shwartsman, Vivek Kumar Singh, Netta Bruchiel-Spanier, Emily Ryan, Netanel Shpigel, Daniel Sharon","doi":"10.1021/acsami.4c15287","DOIUrl":null,"url":null,"abstract":"Dry solid polymer electrolytes (SPEs), particularly those based on poly(ethylene oxide) (PEO), hold significant potential for advancing solid-state Li-metal battery (LMB) technology. Despite extensive research over the years, a comprehensive evaluation of Coulombic efficiency (CE), deposit stability, and cycle life for reversible Li metal electrodeposition in SPE-based cells is still lacking. In this study, we systematically assess the effect of cycling conditions on the CE of Li|SPE|Cu half cells and provide a thorough examination of different electrolyte chemistries, highlighting and explaining their performance across various parameters. While the efficiency of the PEO-based SPEs still falls short of the efficiency benchmark set by liquid and gel electrolytes, we demonstrated >95% CE with Lithium bis(fluorosulfonyl)imide (LiFSI)-based SPEs, surpassing previous reports for dry SPEs in a Li|SPE|Cu cells, this result marks a significant breakthrough. Furthermore, our findings highlight the critical impact of the Li-SPE interphase on these performance metrics. The LiFSI-based SPE forms a Li-rich, high-conductivity interphase, which not only enhances efficiency but also improves cycle life and Li deposit stability. These results underscore the importance of selecting the right polymer electrolyte chemistry and concentration to enhance SPE performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dry solid polymer electrolytes (SPEs), particularly those based on poly(ethylene oxide) (PEO), hold significant potential for advancing solid-state Li-metal battery (LMB) technology. Despite extensive research over the years, a comprehensive evaluation of Coulombic efficiency (CE), deposit stability, and cycle life for reversible Li metal electrodeposition in SPE-based cells is still lacking. In this study, we systematically assess the effect of cycling conditions on the CE of Li|SPE|Cu half cells and provide a thorough examination of different electrolyte chemistries, highlighting and explaining their performance across various parameters. While the efficiency of the PEO-based SPEs still falls short of the efficiency benchmark set by liquid and gel electrolytes, we demonstrated >95% CE with Lithium bis(fluorosulfonyl)imide (LiFSI)-based SPEs, surpassing previous reports for dry SPEs in a Li|SPE|Cu cells, this result marks a significant breakthrough. Furthermore, our findings highlight the critical impact of the Li-SPE interphase on these performance metrics. The LiFSI-based SPE forms a Li-rich, high-conductivity interphase, which not only enhances efficiency but also improves cycle life and Li deposit stability. These results underscore the importance of selecting the right polymer electrolyte chemistry and concentration to enhance SPE performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.