Marc Robin, Elodie Mouloungui, Gabriel Castillo Dali, Yan Wang, Jean-Louis Saffar, Graciela Pavon-Djavid, Thibaut Divoux, Sébastien Manneville, Luc Behr, Delphine Cardi, Laurence Choudat, Marie-Madeleine Giraud-Guille, Anne Meddahi-Pellé, Fannie Baudimont, Marie-Laure Colombier, Nadine Nassif
{"title":"Mineralized collagen plywood contributes to bone autograft performance","authors":"Marc Robin, Elodie Mouloungui, Gabriel Castillo Dali, Yan Wang, Jean-Louis Saffar, Graciela Pavon-Djavid, Thibaut Divoux, Sébastien Manneville, Luc Behr, Delphine Cardi, Laurence Choudat, Marie-Madeleine Giraud-Guille, Anne Meddahi-Pellé, Fannie Baudimont, Marie-Laure Colombier, Nadine Nassif","doi":"10.1038/s41586-024-08208-z","DOIUrl":null,"url":null,"abstract":"<p>Autologous bone (AB) is the gold standard for bone-replacement surgeries<sup>1</sup>, despite its limited availability and the need for an extra surgical site. Traditionally, competitive biomaterials for bone repair have focused on mimicking the mineral aspect of bone, as evidenced by the widespread clinical use of bioactive ceramics<sup>2</sup>. However, AB also exhibits hierarchical organic structures that might substantially affect bone regeneration. Here, using a range of cell-free biomimetic-collagen-based materials in murine and ovine bone-defect models, we demonstrate that a hierarchical hybrid microstructure—specifically, the twisted plywood pattern of collagen and its association with poorly crystallized bioapatite—favourably influences bone regeneration. Our study shows that the most structurally biomimetic material has the potential to stimulate bone growth, highlighting the pivotal role of physicochemical properties in supporting bone formation and offering promising prospects as a competitive bone-graft material.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"14 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08208-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autologous bone (AB) is the gold standard for bone-replacement surgeries1, despite its limited availability and the need for an extra surgical site. Traditionally, competitive biomaterials for bone repair have focused on mimicking the mineral aspect of bone, as evidenced by the widespread clinical use of bioactive ceramics2. However, AB also exhibits hierarchical organic structures that might substantially affect bone regeneration. Here, using a range of cell-free biomimetic-collagen-based materials in murine and ovine bone-defect models, we demonstrate that a hierarchical hybrid microstructure—specifically, the twisted plywood pattern of collagen and its association with poorly crystallized bioapatite—favourably influences bone regeneration. Our study shows that the most structurally biomimetic material has the potential to stimulate bone growth, highlighting the pivotal role of physicochemical properties in supporting bone formation and offering promising prospects as a competitive bone-graft material.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.