Microstructural Study of Containerless Solidification of Al–20wt%Ce Alloy

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-10-21 DOI:10.1002/adem.202401634
Jonas Valloton, Abdoul-Aziz Bogno, Sven C. Vogel, Akankshya Sahoo, Hani Henein
{"title":"Microstructural Study of Containerless Solidification of Al–20wt%Ce Alloy","authors":"Jonas Valloton,&nbsp;Abdoul-Aziz Bogno,&nbsp;Sven C. Vogel,&nbsp;Akankshya Sahoo,&nbsp;Hani Henein","doi":"10.1002/adem.202401634","DOIUrl":null,"url":null,"abstract":"<p>\nContainerless solidification of Al–20wt%Ce is investigated experimentally using the electromagnetic levitation (EML) and impulse atomization (IA) techniques. In the processed EML samples, small primary undercooling and minimal eutectic undercooling are shown. The microstructure consists of large primary Al<sub>11</sub>Ce<sub>3</sub> dendrites surrounded by an α-Al–Al<sub>11</sub>Ce<sub>3</sub> eutectic. Phase fractions determined by neutron diffraction are similar to the values obtained from a Scheil–Gulliver solidification simulation. Larger IA powders (between 425 and 1000 μm) show a microstructure qualitatively similar to that of EML samples, implying that they follow a similar solidification path. Quantitatively, microstructural features are finer due to the higher cooling rates involved in the solidification process. Atomized particles with a size lower than 425 μm show a strikingly different microstructure, with a very fine eutectic giving way to large intermetallic plates surround by a regular eutectic. Microhardness testing of the structures shows a significant increase in hardness as the sample size decreases, going from 45.8 ± 3.6 HV for the EML sample (lowest cooling rate) to 142.2 ± 12.0 HV for particles in the 106–150 μm range (highest cooling rate).</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401634","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Containerless solidification of Al–20wt%Ce is investigated experimentally using the electromagnetic levitation (EML) and impulse atomization (IA) techniques. In the processed EML samples, small primary undercooling and minimal eutectic undercooling are shown. The microstructure consists of large primary Al11Ce3 dendrites surrounded by an α-Al–Al11Ce3 eutectic. Phase fractions determined by neutron diffraction are similar to the values obtained from a Scheil–Gulliver solidification simulation. Larger IA powders (between 425 and 1000 μm) show a microstructure qualitatively similar to that of EML samples, implying that they follow a similar solidification path. Quantitatively, microstructural features are finer due to the higher cooling rates involved in the solidification process. Atomized particles with a size lower than 425 μm show a strikingly different microstructure, with a very fine eutectic giving way to large intermetallic plates surround by a regular eutectic. Microhardness testing of the structures shows a significant increase in hardness as the sample size decreases, going from 45.8 ± 3.6 HV for the EML sample (lowest cooling rate) to 142.2 ± 12.0 HV for particles in the 106–150 μm range (highest cooling rate).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al-20wt%Ce 合金无容器凝固的微观结构研究
利用电磁悬浮(EML)和脉冲雾化(IA)技术对 Al-20wt%Ce 的无容器凝固进行了实验研究。在处理过的 EML 样品中,显示出较小的原生过冷度和最小的共晶过冷度。微观结构包括被 α-Al-Al11Ce3 共晶包围的大型原生 Al11Ce3 树枝。通过中子衍射测定的相分数与 Scheil-Gulliver 凝固模拟得到的数值相似。较大的 IA 粉末(425 至 1000 μm)显示出与 EML 样品相似的微观结构,这意味着它们遵循了相似的凝固路径。从数量上看,由于凝固过程中的冷却速度较高,微观结构特征更为精细。尺寸小于 425 μm 的雾化颗粒显示出截然不同的微观结构,非常精细的共晶让位于被规则共晶包围的大型金属间板。这些结构的显微硬度测试表明,随着样品尺寸的减小,硬度显著增加,从 EML 样品(冷却速率最低)的 45.8 ± 3.6 HV 增加到 106-150 μm 颗粒(冷却速率最高)的 142.2 ± 12.0 HV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1