Huan Liu, YuZe Wang, Tao Zeng, HaiFeng Wang, Shing-Chow Chan, Li Ran
{"title":"Wind turbine generator failure analysis and fault diagnosis: A review","authors":"Huan Liu, YuZe Wang, Tao Zeng, HaiFeng Wang, Shing-Chow Chan, Li Ran","doi":"10.1049/rpg2.13104","DOIUrl":null,"url":null,"abstract":"<p>The large scale deployment of modern wind turbines and the yearly increase of installed capacity have drawn attention to their operation and maintenance issues. The development of highly reliable and low-maintenance wind turbines is an urgent demand in order to achieve the low-carbon goals, and the arrival of fault diagnosis provides assurance for its satisfactory operation and maintenance. Numerous statistical studies have pointed out that generator failures are a main cause of wind turbine system downtime. The generator, as one of the core components, converts rotating mechanical energy into electrical energy. However, the generators can hardly operate reliably towards the end of the turbine life owing to the variable-speed conditions and harsh electromagnetic environments. This article first provides a comprehensive and up-to-date review of the electrical and mechanical failures of various parts (stator, rotor, air gap and bearings) of the generator. Then the fault characteristics and diagnostic processes of generators are investigated, and the principles and processes of fault diagnosis are discussed. Finally, the application of four categories of model-based, signal-based, knowledge-based and hybrid approaches to wind turbine generator fault diagnosis is summarized. The comprehensive review shows that the hybrid approach is now the leading and most accurate tool for real-time fault diagnosis for wind turbine generators. A qualitative and quantitative assessment of algorithm performance using false alarm rates is proposed. The methodology can subsequently be applied to the wind industry.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3127-3148"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The large scale deployment of modern wind turbines and the yearly increase of installed capacity have drawn attention to their operation and maintenance issues. The development of highly reliable and low-maintenance wind turbines is an urgent demand in order to achieve the low-carbon goals, and the arrival of fault diagnosis provides assurance for its satisfactory operation and maintenance. Numerous statistical studies have pointed out that generator failures are a main cause of wind turbine system downtime. The generator, as one of the core components, converts rotating mechanical energy into electrical energy. However, the generators can hardly operate reliably towards the end of the turbine life owing to the variable-speed conditions and harsh electromagnetic environments. This article first provides a comprehensive and up-to-date review of the electrical and mechanical failures of various parts (stator, rotor, air gap and bearings) of the generator. Then the fault characteristics and diagnostic processes of generators are investigated, and the principles and processes of fault diagnosis are discussed. Finally, the application of four categories of model-based, signal-based, knowledge-based and hybrid approaches to wind turbine generator fault diagnosis is summarized. The comprehensive review shows that the hybrid approach is now the leading and most accurate tool for real-time fault diagnosis for wind turbine generators. A qualitative and quantitative assessment of algorithm performance using false alarm rates is proposed. The methodology can subsequently be applied to the wind industry.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf