{"title":"Identification of dominant instability modes in power systems based on spatial-temporal feature mining and TSOA optimization","authors":"Miao Yu, Jianqun Sun, Shuoshuo Tian, Shouzhi Zhang, Jingjing Wei, Yixiao Wu","doi":"10.1049/gtd2.13291","DOIUrl":null,"url":null,"abstract":"<p>The recognition of the transient dominant instability mode is of great significance for rapidly and accurately formulating transient emergency decisions in power systems. In response to the challenge of accurately distinguishing between angle instability and voltage instability, which are coupled in actual power grids, this paper explores the mapping relationship between simulation data and the stable state of the system, as well as the dominant instability mode. The method enables real-time identification of the dominant instability mode, which bypasses complex physical mechanisms. Firstly, spatio-temporal feature mining is conducted, where convolutional neural networks are employed to learn crucial local features of transient curves, and bidirectional gated recurrent unit s utilized to learn transient features over time sequences. Next, a multihead attention mechanism is introduced to enhance sensitivity to important time steps in the sequence data. Finally, the transit search optimization algorithm optimizes the global model parameters, further increasing the accuracy of the model. Using the IEEE 10-machine and 39-node system as an example for simulation, the results validate that the proposed method exhibits significant advantages in terms of accuracy and applicability compared with other machine learning methods.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3424-3436"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13291","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The recognition of the transient dominant instability mode is of great significance for rapidly and accurately formulating transient emergency decisions in power systems. In response to the challenge of accurately distinguishing between angle instability and voltage instability, which are coupled in actual power grids, this paper explores the mapping relationship between simulation data and the stable state of the system, as well as the dominant instability mode. The method enables real-time identification of the dominant instability mode, which bypasses complex physical mechanisms. Firstly, spatio-temporal feature mining is conducted, where convolutional neural networks are employed to learn crucial local features of transient curves, and bidirectional gated recurrent unit s utilized to learn transient features over time sequences. Next, a multihead attention mechanism is introduced to enhance sensitivity to important time steps in the sequence data. Finally, the transit search optimization algorithm optimizes the global model parameters, further increasing the accuracy of the model. Using the IEEE 10-machine and 39-node system as an example for simulation, the results validate that the proposed method exhibits significant advantages in terms of accuracy and applicability compared with other machine learning methods.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf