A state-variable-preserving method for the efficient modelling of inverter-based resources in parallel EMT simulation

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2025-02-05 DOI:10.1049/gtd2.70013
Qiguo Wang, Jin Xu, Keyou Wang, Guojie Li, Zhenyuan Feng
{"title":"A state-variable-preserving method for the efficient modelling of inverter-based resources in parallel EMT simulation","authors":"Qiguo Wang,&nbsp;Jin Xu,&nbsp;Keyou Wang,&nbsp;Guojie Li,&nbsp;Zhenyuan Feng","doi":"10.1049/gtd2.70013","DOIUrl":null,"url":null,"abstract":"<p>The aggregation models of renewable energy power stations are difficult to apply to the stability research of the fault inside the station or the oscillation analysis between the station and the grid-side system, and the high dimensional characteristics of their detailed model will pose an enormous challenge to the simulation efficiency. To alleviate the contradiction between accuracy and efficiency, this paper proposes a state-variable-preserving method to efficiently model inverter-based resources and a node tearing method to realize parallel simulation of the renewable energy power station consisting of inverter-based resources. The state-variable-preserving model uses discrete state space expression to eliminate the internal nodes on the basis of preserving the original variables of the generation unit and reduces the solving scale of the generation station. The node tearing method reduces the solving complexity of the associated variables, which is more consistent with the topology characteristic that different power generation clusters are interconnected by the same bus. In the case study, the results of numerical accuracy analysis and numerical stability analysis of a photovoltaic power plant verify the reliability of the proposed method, and its simulation efficiency is verified by changing the scale of the photovoltaic power plant.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The aggregation models of renewable energy power stations are difficult to apply to the stability research of the fault inside the station or the oscillation analysis between the station and the grid-side system, and the high dimensional characteristics of their detailed model will pose an enormous challenge to the simulation efficiency. To alleviate the contradiction between accuracy and efficiency, this paper proposes a state-variable-preserving method to efficiently model inverter-based resources and a node tearing method to realize parallel simulation of the renewable energy power station consisting of inverter-based resources. The state-variable-preserving model uses discrete state space expression to eliminate the internal nodes on the basis of preserving the original variables of the generation unit and reduces the solving scale of the generation station. The node tearing method reduces the solving complexity of the associated variables, which is more consistent with the topology characteristic that different power generation clusters are interconnected by the same bus. In the case study, the results of numerical accuracy analysis and numerical stability analysis of a photovoltaic power plant verify the reliability of the proposed method, and its simulation efficiency is verified by changing the scale of the photovoltaic power plant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Analysis of broadband oscillation mechanisms in grid-forming and grid-following converters based on virtual synchronous generator A state-variable-preserving method for the efficient modelling of inverter-based resources in parallel EMT simulation Frequency safety demand and coordinated control strategy for power system with wind power and energy storage Stochastic optimization of integrated electricity-heat-gas energy system considering uncertainty of indirect carbon emission intensity Field analysis of directionality measurement with inverter based resources in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1