Injectable Hyaluronic Acid-Based Hydrogels for Rapid Endoscopic Submucosal Dissection.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-19 DOI:10.1021/acsbiomaterials.4c01703
Geng Qin, Ruonan Wu, Qianqian Wang, Meizhou Sun, Yang Li, Shun Duan, Fu-Jian Xu
{"title":"Injectable Hyaluronic Acid-Based Hydrogels for Rapid Endoscopic Submucosal Dissection.","authors":"Geng Qin, Ruonan Wu, Qianqian Wang, Meizhou Sun, Yang Li, Shun Duan, Fu-Jian Xu","doi":"10.1021/acsbiomaterials.4c01703","DOIUrl":null,"url":null,"abstract":"<p><p>Endoscopic submucosal dissection (ESD) is a widely used procedure for the treatment of early and precancerous gastrointestinal lesions and has become the standard treatment. In this procedure, the commonly used materials have a short retention time and a limited lifting capacity, which will prolong the duration of the ESD procedure. Furthermore, these liquids tend to diffuse after ESD surgery, failing to adequately protect the wound. Therefore, we designed and developed injectable hydrogels based on hyaluronic acid. A series of oxidized hyaluronic acid (OHA) and hydrazide hyaluronic acid (AHA) were synthesized, and 16 kinds of injectable hydrogels were fabricated to investigate the effects of molecular structures on the properties of the hydrogels. Among these, the O1A3 hydrogel exhibited a suitable injection performance, gelation time, and mechanical properties, along with good blood and cell compatibility <i>in vitro</i>. Subsequently, in a porcine model of the ESD procedure, the results demonstrated that the O1A3 hydrogel exhibited a good retention time and lifting performance while also significantly reducing the operation time from 1-2 h to ∼10 min. Furthermore, the adhesive property of the O1A3 hydrogel on small bleeding spots and wounds could be observed, which was beneficial in protecting the wound from the complex environment of the gastrointestinal tract. The present work of injectable hyaluronic acid-based hydrogels could be promising to improve the efficiency of ESD surgery.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Endoscopic submucosal dissection (ESD) is a widely used procedure for the treatment of early and precancerous gastrointestinal lesions and has become the standard treatment. In this procedure, the commonly used materials have a short retention time and a limited lifting capacity, which will prolong the duration of the ESD procedure. Furthermore, these liquids tend to diffuse after ESD surgery, failing to adequately protect the wound. Therefore, we designed and developed injectable hydrogels based on hyaluronic acid. A series of oxidized hyaluronic acid (OHA) and hydrazide hyaluronic acid (AHA) were synthesized, and 16 kinds of injectable hydrogels were fabricated to investigate the effects of molecular structures on the properties of the hydrogels. Among these, the O1A3 hydrogel exhibited a suitable injection performance, gelation time, and mechanical properties, along with good blood and cell compatibility in vitro. Subsequently, in a porcine model of the ESD procedure, the results demonstrated that the O1A3 hydrogel exhibited a good retention time and lifting performance while also significantly reducing the operation time from 1-2 h to ∼10 min. Furthermore, the adhesive property of the O1A3 hydrogel on small bleeding spots and wounds could be observed, which was beneficial in protecting the wound from the complex environment of the gastrointestinal tract. The present work of injectable hyaluronic acid-based hydrogels could be promising to improve the efficiency of ESD surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速内镜粘膜下剥离的可注射透明质酸水凝胶
内镜黏膜下剥离术(ESD)是一种广泛应用于治疗早期和癌前胃肠道病变的手术,并已成为标准治疗方法。在这一过程中,常用的材料停留时间短,提升能力有限,这将延长 ESD 过程的持续时间。此外,这些液体在ESD手术后容易扩散,无法充分保护伤口。因此,我们设计并开发了基于透明质酸的可注射水凝胶。我们合成了一系列氧化透明质酸(OHA)和酰肼透明质酸(AHA),并制作了 16 种可注射水凝胶,以研究分子结构对水凝胶性能的影响。其中,O1A3 水凝胶具有合适的注射性能、凝胶时间和机械性能,并且在体外具有良好的血液和细胞相容性。随后,在猪的静电放电过程模型中,结果表明 O1A3 水凝胶具有良好的保留时间和提升性能,同时还将操作时间从 1-2 小时大幅缩短至 10 分钟。此外,还可以观察到 O1A3 水凝胶对小出血点和伤口的粘附性,这有利于保护伤口免受胃肠道复杂环境的影响。注射用透明质酸水凝胶有望提高ESD手术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
DNA Aptamers That Bind to Alginate Hydrogels. Biomimetic Nanovaccines Restore Immunosuppressive Tumor Antigen-Presenting Cells via the Saposin-Feeding Strategy. Injectable Hyaluronic Acid-Based Hydrogels for Rapid Endoscopic Submucosal Dissection. Local Stiffness Measurement of Hepatic Steatosis Model Liver Organoid by Fluorescence Imaging-Assisted Probe Indentation. Piezo1 Mediates Glycolysis-Boosted Pancreatic Ductal Adenocarcinoma Chemoresistance within a Biomimetic Three-Dimensional Matrix Stiffness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1