Integrated Transcriptome Analysis Reveals Novel Molecular Signatures for Schizophrenia Characterization.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-20 DOI:10.1002/advs.202407628
Tong Ni, Yu Sun, Zefeng Li, Tao Tan, Wei Han, Miao Li, Li Zhu, Jing Xiao, Huiying Wang, Wenpei Zhang, Yitian Ma, Biao Wang, Di Wen, Teng Chen, Justin Tubbs, Xiaofeng Zeng, Jiangwei Yan, Hongsheng Gui, Pak Sham, Fanglin Guan
{"title":"Integrated Transcriptome Analysis Reveals Novel Molecular Signatures for Schizophrenia Characterization.","authors":"Tong Ni, Yu Sun, Zefeng Li, Tao Tan, Wei Han, Miao Li, Li Zhu, Jing Xiao, Huiying Wang, Wenpei Zhang, Yitian Ma, Biao Wang, Di Wen, Teng Chen, Justin Tubbs, Xiaofeng Zeng, Jiangwei Yan, Hongsheng Gui, Pak Sham, Fanglin Guan","doi":"10.1002/advs.202407628","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SCZ) is a complex psychiatric disorder presenting challenges for characterization. The current study aimed to identify and evaluate disease-responsive essential genes (DREGs) to enhance the molecular characterization of SCZ. RNA-sequencing data from PsychENCODE (536 SCZ patients, 832 controls) and peripheral blood transcriptome data from 144 recruited subjects (59 SCZ patients, 6 non-SCZ psychiatric patients, 79 controls) are analyzed. Shared differential expression genes are obtained using three algorithms. Support vector machine (SVM)-based recursive feature elimination is employed to identify DREGs. The biological relevance of these DREGs is examined through protein-protein interaction network, pathway enrichment, polygenic scoring, and brain tissue expression. Key DREGs are validated in SCZ animal models. A DREGs-based machine-learning model for SCZ characterization is developed and its performance is assessed using multiple datasets. The analysis identified 184 DREGs forming an interconnected network involved in synaptic plasticity, inflammation, neuronal development, and neurotransmission. DREGs exhibited distinct expression in SCZ-related brain regions and animal models. Their genetic contributions are comparable to genome-wide polygenic risk scores. The DREG-based SVM model demonstrated high performance (AUC 85% for SCZ characterization, 79% for specificity). These findings provide new insights into the molecular mechanisms underlying SCZ and emphasize the potential of DREGs in improving SCZ characterization.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2407628"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia (SCZ) is a complex psychiatric disorder presenting challenges for characterization. The current study aimed to identify and evaluate disease-responsive essential genes (DREGs) to enhance the molecular characterization of SCZ. RNA-sequencing data from PsychENCODE (536 SCZ patients, 832 controls) and peripheral blood transcriptome data from 144 recruited subjects (59 SCZ patients, 6 non-SCZ psychiatric patients, 79 controls) are analyzed. Shared differential expression genes are obtained using three algorithms. Support vector machine (SVM)-based recursive feature elimination is employed to identify DREGs. The biological relevance of these DREGs is examined through protein-protein interaction network, pathway enrichment, polygenic scoring, and brain tissue expression. Key DREGs are validated in SCZ animal models. A DREGs-based machine-learning model for SCZ characterization is developed and its performance is assessed using multiple datasets. The analysis identified 184 DREGs forming an interconnected network involved in synaptic plasticity, inflammation, neuronal development, and neurotransmission. DREGs exhibited distinct expression in SCZ-related brain regions and animal models. Their genetic contributions are comparable to genome-wide polygenic risk scores. The DREG-based SVM model demonstrated high performance (AUC 85% for SCZ characterization, 79% for specificity). These findings provide new insights into the molecular mechanisms underlying SCZ and emphasize the potential of DREGs in improving SCZ characterization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合转录组分析揭示精神分裂症特征的新分子特征
精神分裂症(SCZ)是一种复杂的精神疾病,其特征描述面临挑战。本研究旨在识别和评估疾病反应性重要基因(DREGs),以加强对精神分裂症的分子特征描述。研究分析了来自 PsychENCODE 的 RNA 序列数据(536 名 SCZ 患者,832 名对照组)和来自 144 名受试者(59 名 SCZ 患者,6 名非 SCZ 精神病患者,79 名对照组)的外周血转录组数据。共享差异表达基因通过三种算法获得。基于支持向量机(SVM)的递归特征消除被用来识别 DREGs。通过蛋白质-蛋白质相互作用网络、通路富集、多基因评分和脑组织表达,研究了这些 DREGs 的生物学相关性。在 SCZ 动物模型中验证了关键的 DREGs。开发了一种基于 DREGs 的机器学习模型,用于 SCZ 特征描述,并使用多个数据集对其性能进行了评估。分析确定了 184 个 DREGs,它们构成了一个相互关联的网络,涉及突触可塑性、炎症、神经元发育和神经传递。DREGs在SCZ相关脑区和动物模型中表现出不同的表达。它们的遗传贡献与全基因组多基因风险评分相当。基于 DREG 的 SVM 模型表现出很高的性能(SCZ 特征的 AUC 为 85%,特异性为 79%)。这些发现提供了对SCZ分子机制的新见解,并强调了DREGs在改善SCZ特征描述方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Emergent Self-Adaptation in an Integrated Photonic Neural Network for Backpropagation-Free Learning. Integrated Transcriptome Analysis Reveals Novel Molecular Signatures for Schizophrenia Characterization. Osteoblast-Derived ECM1 Promotes Anti-Androgen Resistance in Bone Metastatic Prostate Cancer. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. Ginkgetin Alleviates Inflammation and Senescence by Targeting STING.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1