Amit Kumar Mahto, Sahadev Barik, Jaya Prakash Madda, Moloy Sarkar
{"title":"A Fluorescent Covalent Organic Cage for Ultrafast Detection of Picric Acid and HCl Vapor Sensing.","authors":"Amit Kumar Mahto, Sahadev Barik, Jaya Prakash Madda, Moloy Sarkar","doi":"10.1002/asia.202400912","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic cages (COCs) have recently gained massive attention owing to their solution processability and structural flexibility. Herein, we report an amine-linked fluorescent COC (COC2) synthesized by adopting dynamic covalent imine chemistry followed by imine bond reduction and characterized with different spectroscopic techniques. The COC2 was utilized for highly sensitive and selective detection of picric acid at the nanomolar level. The fluorescence quenching efficiency of PA towards the COC2 is 98.6%, with a detection limit of 2.7 nM. PA sensing with the COC2, coated on a TLC plate and paper strip, exhibited an outstanding fluorescence quenching property. Furthermore, the COC2 unveiled solid-state acidochromism upon exposure to HCl acid fumes and was transferred back to the original form on exposure to NH3 vapours.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400912"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400912","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic cages (COCs) have recently gained massive attention owing to their solution processability and structural flexibility. Herein, we report an amine-linked fluorescent COC (COC2) synthesized by adopting dynamic covalent imine chemistry followed by imine bond reduction and characterized with different spectroscopic techniques. The COC2 was utilized for highly sensitive and selective detection of picric acid at the nanomolar level. The fluorescence quenching efficiency of PA towards the COC2 is 98.6%, with a detection limit of 2.7 nM. PA sensing with the COC2, coated on a TLC plate and paper strip, exhibited an outstanding fluorescence quenching property. Furthermore, the COC2 unveiled solid-state acidochromism upon exposure to HCl acid fumes and was transferred back to the original form on exposure to NH3 vapours.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).