{"title":"Elemental composition oriented biomass wastes sorting method towards efficient downstream energy recovery.","authors":"Rui Liang, Junyu Tao, Chao Chen, Zhanjun Cheng, Mengyao Song, Beibei Yan, Guanyi Chen","doi":"10.1016/j.jenvman.2024.123311","DOIUrl":null,"url":null,"abstract":"<p><p>Biomass wastes (BW) can be used to produce value-added products by multiple energy recovery technologies. However, the actual conversion results are unsatisfactory since heterogeneous feedstocks mixture with different characteristics are hard to optimally recovered in the same fine conversion process. This paper aimed to develop a new method to improve the energy conversion efficiencies, which focused on the rational matching of BW characteristics and demand for highly efficient energy recovery. Accordingly, this paper explored the correlation between BW representative characteristics and energy conversion efficiencies. The results showed that BW types with different characteristics had significant correlation with multiple utilization technologies (P value < 0.05). Existing BW sorting methods based on source/density showed limited promotion on downstream utilization since the large diversity of characteristics within groups. Furthermore, to assist efficient energy conversion of BW, a novel BW sorting mode, different from traditional manual and mechanical sorting methods, was established to achieve the matching between feedstocks and utilization technologies. The chemical properties, containing elemental composition and heating value, were selected as BW sorting criterion. According to new sorting categories, the fuel characteristics, reaction conditions and products performance in terms of its energy conversion process have more significant differences between groups than traditional sorting methods. The energy conversion efficiency can be improved by 10.71% than unsorted as least. The new BW sorting method towards efficient downstream energy recovery has feasibility in industrial applications. The future perspectives were also discussed. This work was helpful to improve the downstream energy utilization.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"372 ","pages":"123311"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123311","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass wastes (BW) can be used to produce value-added products by multiple energy recovery technologies. However, the actual conversion results are unsatisfactory since heterogeneous feedstocks mixture with different characteristics are hard to optimally recovered in the same fine conversion process. This paper aimed to develop a new method to improve the energy conversion efficiencies, which focused on the rational matching of BW characteristics and demand for highly efficient energy recovery. Accordingly, this paper explored the correlation between BW representative characteristics and energy conversion efficiencies. The results showed that BW types with different characteristics had significant correlation with multiple utilization technologies (P value < 0.05). Existing BW sorting methods based on source/density showed limited promotion on downstream utilization since the large diversity of characteristics within groups. Furthermore, to assist efficient energy conversion of BW, a novel BW sorting mode, different from traditional manual and mechanical sorting methods, was established to achieve the matching between feedstocks and utilization technologies. The chemical properties, containing elemental composition and heating value, were selected as BW sorting criterion. According to new sorting categories, the fuel characteristics, reaction conditions and products performance in terms of its energy conversion process have more significant differences between groups than traditional sorting methods. The energy conversion efficiency can be improved by 10.71% than unsorted as least. The new BW sorting method towards efficient downstream energy recovery has feasibility in industrial applications. The future perspectives were also discussed. This work was helpful to improve the downstream energy utilization.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.