Physicochemical and functional characterization of the mucilage obtained from cladodes of two Opuntia species.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-11-18 DOI:10.1016/j.ijbiomac.2024.137802
A L García, C M Pérez Zamora, A G Michaluk, M B Nuñez, A M Gonzalez, C A Torres
{"title":"Physicochemical and functional characterization of the mucilage obtained from cladodes of two Opuntia species.","authors":"A L García, C M Pérez Zamora, A G Michaluk, M B Nuñez, A M Gonzalez, C A Torres","doi":"10.1016/j.ijbiomac.2024.137802","DOIUrl":null,"url":null,"abstract":"<p><p>The mucilage is an interesting compound found in cladodes of species of Opuntia (Cactaceae). The aim of this work was to extract the mucilages from Opuntia ficus-indica (OFI) and O. quimilo (OQ) cladodes and to examine their physicochemical characteristics, microstructure, and functional properties in solution. The mucilages exhibited high contents of carbohydrates, proteins, and minerals. Both mucilages presented a diverse monosaccharide composition, mainly constituted of galactose and arabinose. The FTIR spectra showed characteristic polysaccharide nature, whereas the diffractograms demonstrated an amorphous structure. The intrinsic viscosity of OFI mucilage was 3.08 dL/g, while that of OQ mucilage was 10.33 dL/g. Although the molecular weights of both mucilages are in the order of those of commercial gums, that of OQ was higher. This is consistent with the pseudoplastic behavior of OQ mucilage. However, OFI mucilage showed Newtonian behavior over the range of concentrations evaluated. This is fully consistent with that of semi-diluted solutions and in accordance with the lower molecular weight of this mucilage. The mucilages presented maximum solubility at 60 °C, although the mucilage of OFI was slightly more soluble than that of OQ. The chemical composition and functional properties of the mucilages can be affected by the extraction method and conditions.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137802"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137802","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mucilage is an interesting compound found in cladodes of species of Opuntia (Cactaceae). The aim of this work was to extract the mucilages from Opuntia ficus-indica (OFI) and O. quimilo (OQ) cladodes and to examine their physicochemical characteristics, microstructure, and functional properties in solution. The mucilages exhibited high contents of carbohydrates, proteins, and minerals. Both mucilages presented a diverse monosaccharide composition, mainly constituted of galactose and arabinose. The FTIR spectra showed characteristic polysaccharide nature, whereas the diffractograms demonstrated an amorphous structure. The intrinsic viscosity of OFI mucilage was 3.08 dL/g, while that of OQ mucilage was 10.33 dL/g. Although the molecular weights of both mucilages are in the order of those of commercial gums, that of OQ was higher. This is consistent with the pseudoplastic behavior of OQ mucilage. However, OFI mucilage showed Newtonian behavior over the range of concentrations evaluated. This is fully consistent with that of semi-diluted solutions and in accordance with the lower molecular weight of this mucilage. The mucilages presented maximum solubility at 60 °C, although the mucilage of OFI was slightly more soluble than that of OQ. The chemical composition and functional properties of the mucilages can be affected by the extraction method and conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从两种欧庞蒂亚树种的茎秆中提取的粘液的物理化学和功能特性。
粘液是一种有趣的化合物,存在于仙人掌科(Cactaceae)植物的苞片中。这项工作的目的是从 Opuntia ficus-indica(OFI)和 O. quimilo(OQ)的苞片中提取粘液,并研究它们在溶液中的物理化学特征、微观结构和功能特性。粘液表现出较高的碳水化合物、蛋白质和矿物质含量。两种粘液都呈现出多种单糖组成,主要由半乳糖和阿拉伯糖构成。傅立叶变换红外光谱显示出多糖特性,而衍射图则显示出无定形结构。OFI 粘液的固有粘度为 3.08 dL/g,而 OQ 粘液的固有粘度为 10.33 dL/g。虽然两种粘液的分子量都与商品胶的分子量相当,但 OQ 的分子量更高。这与 OQ 粘液的假塑性一致。不过,OFI 粘液质在所评估的浓度范围内都表现出牛顿特性。这与半稀释溶液的情况完全一致,也符合这种粘液分子量较低的特点。虽然 OFI 的粘液比 OQ 的粘液溶解度稍高,但粘液在 60 °C 时的溶解度最大。粘液质的化学成分和功能特性会受到提取方法和条件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo). Corrigendum to "Recombinant porcine interferon δ8 inhibited porcine deltacoronavirus infection in vitro and in vivo" [Int. J. Biol. Macromol. 279 (2024) 135375]. A gelatin/acrylamide-based hydrogel for smart drug release monitoring and radiation-induced wound repair in breast cancer. Advanced BiVO4-deoxygenated lignocellulosic photocatalyst for effective degradation of organic and heavy metal pollutants in aqueous system. Anionic surfactant effect on the structural and thermal insulation properties of crosslinked-cellulose nanofiber foam and its superhydrophobic treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1