Self-assembly of snowflake-like Cu2S with ultrathin ZnIn2S4 nanosheets to form S-scheme heterojunctions for photocatalytic hydrogen production.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-15 DOI:10.1016/j.jcis.2024.11.070
Zhihui Yang, Jiali Ren, Junhua You, Xilu Luo, Xinyu Wang, Yanjun Xue, Yingying Qin, Jian Tian, Hangzhou Zhang, Shuai Han
{"title":"Self-assembly of snowflake-like Cu<sub>2</sub>S with ultrathin ZnIn<sub>2</sub>S<sub>4</sub> nanosheets to form S-scheme heterojunctions for photocatalytic hydrogen production.","authors":"Zhihui Yang, Jiali Ren, Junhua You, Xilu Luo, Xinyu Wang, Yanjun Xue, Yingying Qin, Jian Tian, Hangzhou Zhang, Shuai Han","doi":"10.1016/j.jcis.2024.11.070","DOIUrl":null,"url":null,"abstract":"<p><p>Step-scheme (S-scheme) heterojunction has attracted much attention in the design of heterostructures for photocatalysts. In this study, we successfully utilized the principle of electrostatic self-assembly to load ultrathin ZnIn<sub>2</sub>S<sub>4</sub> nanosheets onto snowflake-like Cu<sub>2</sub>S using a simple grinding method, and synthesized Cu<sub>2</sub>S/ZnIn<sub>2</sub>S<sub>4</sub> S-scheme heterojunctions according to the different work functions (Φ). At the optimal Cu<sub>2</sub>S loading ratio (5 wt%), the hydrogen yield of the Cu<sub>2</sub>S/ZnIn<sub>2</sub>S<sub>4</sub> composites reaches 5.58 mmol·h<sup>-1</sup>·g<sup>-1</sup>, which is 5.12 times higher than that of pure ZnIn<sub>2</sub>S<sub>4</sub> (1.09 mmol·h<sup>-1</sup>·g<sup>-1</sup>). The apparent quantum efficiency (AQE) of the Cu<sub>2</sub>S/ZnIn<sub>2</sub>S<sub>4</sub> composites reaches 5.8 % (λ = 370 nm), which is an improvement compared to pure ZnIn<sub>2</sub>S<sub>4</sub> (2.7 %). The AQE of pure ZnIn<sub>2</sub>S<sub>4</sub> is 0.4 %, while the AQE of Cu<sub>2</sub>S/ZnIn<sub>2</sub>S<sub>4</sub> composites is enhanced to 1.0 % at λ = 456 nm. The heterojunction interface of Cu<sub>2</sub>S and ZnIn<sub>2</sub>S<sub>4</sub> builds a built-in electric field (IEF), which greatly reduces the recombination rate of photogenerated electrons and holes, retains highly reduced photoelectrons in the conduction band (CB) of ZnIn<sub>2</sub>S<sub>4</sub>. The snowflake structure of Cu<sub>2</sub>S effectively increases the active sites and specific surface area, and improves the light absorption. This work opens a new avenue for designing photocatalysts, synergizing energy development and protecting the environment.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"124-136"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Step-scheme (S-scheme) heterojunction has attracted much attention in the design of heterostructures for photocatalysts. In this study, we successfully utilized the principle of electrostatic self-assembly to load ultrathin ZnIn2S4 nanosheets onto snowflake-like Cu2S using a simple grinding method, and synthesized Cu2S/ZnIn2S4 S-scheme heterojunctions according to the different work functions (Φ). At the optimal Cu2S loading ratio (5 wt%), the hydrogen yield of the Cu2S/ZnIn2S4 composites reaches 5.58 mmol·h-1·g-1, which is 5.12 times higher than that of pure ZnIn2S4 (1.09 mmol·h-1·g-1). The apparent quantum efficiency (AQE) of the Cu2S/ZnIn2S4 composites reaches 5.8 % (λ = 370 nm), which is an improvement compared to pure ZnIn2S4 (2.7 %). The AQE of pure ZnIn2S4 is 0.4 %, while the AQE of Cu2S/ZnIn2S4 composites is enhanced to 1.0 % at λ = 456 nm. The heterojunction interface of Cu2S and ZnIn2S4 builds a built-in electric field (IEF), which greatly reduces the recombination rate of photogenerated electrons and holes, retains highly reduced photoelectrons in the conduction band (CB) of ZnIn2S4. The snowflake structure of Cu2S effectively increases the active sites and specific surface area, and improves the light absorption. This work opens a new avenue for designing photocatalysts, synergizing energy development and protecting the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪花状 Cu2S 与超薄 ZnIn2S4 纳米片自组装形成用于光催化制氢的 S 型异质结。
阶梯型(S-scheme)异质结在光催化剂异质结构的设计中备受关注。在本研究中,我们成功地利用静电自组装原理,通过简单的研磨方法将超薄的 ZnIn2S4 纳米片负载到雪花状的 Cu2S 上,并根据不同的功函数(Φ)合成了 Cu2S/ZnIn2S4 S 型异质结。在最佳Cu2S负载率(5 wt%)下,Cu2S/ZnIn2S4复合材料的氢产率达到5.58 mmol-h-1-g-1,是纯ZnIn2S4(1.09 mmol-h-1-g-1)的5.12倍。Cu2S/ZnIn2S4 复合材料的表观量子效率(AQE)达到 5.8 %(λ = 370 nm),与纯 ZnIn2S4(2.7 %)相比有所提高。纯 ZnIn2S4 的 AQE 为 0.4%,而 Cu2S/ZnIn2S4 复合材料的 AQE 在 λ = 456 纳米时提高到 1.0%。Cu2S 和 ZnIn2S4 的异质结界面建立了一个内置电场 (IEF),大大降低了光生电子和空穴的重组率,在 ZnIn2S4 的导带 (CB) 中保留了高度还原的光电子。Cu2S 的雪花结构有效地增加了活性位点和比表面积,提高了光吸收能力。这项工作为设计光催化剂、协同开发能源和保护环境开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. Separator modification with a high-entropy hydroxyphosphate, Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), for high-performance Li-S batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1