{"title":"Protein profile of mouse endolymph suggests a role in controlling cochlear homeostasis.","authors":"Masatoshi Fukuda, Hiroki Okanishi, Daisuke Ino, Kazuya Ono, Takeru Ota, Eri Wakai, Takashi Sato, Yumi Ohta, Yoshiaki Kikkawa, Hidenori Inohara, Yoshikatsu Kanai, Hiroshi Hibino","doi":"10.1016/j.isci.2024.111214","DOIUrl":null,"url":null,"abstract":"<p><p>The cochlea contains two extracellular fluids, perilymph and endolymph. Endolymph exhibits high potential of approximately +80 to +110 mV (depending on species), which sensitizes sensory hair cells. Other properties of this unique fluid remain elusive, owing to its minuscule volume in rodent cochlea. We therefore developed a technique to collect high-purity endolymph from mouse cochleae. Comprehensive proteomic analysis of sampled endolymph using liquid chromatography with mass spectrometry identified 301 proteins, dominated by molecules engaged in immunity and proteostasis. Approximately 30% of these proteins were undetectable in our perilymph. A combination of mass spectrometry and different approaches revealed that, compared to perilymph, endolymph was enriched with α<sub>2</sub>-macroglobulin, osteopontin, apolipoprotein D, apolipoprotein E, and apolipoprotein J/clusterin. In other cells or tissues, α<sub>2</sub>-macroglobulin, apolipoprotein E, and apolipoprotein J contribute to the clearance of degraded proteins from extracellular fluid. Altogether, with the proteins described here, endolymph may play a protective role in stabilizing cochlear homeostasis.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 11","pages":"111214"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.111214","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cochlea contains two extracellular fluids, perilymph and endolymph. Endolymph exhibits high potential of approximately +80 to +110 mV (depending on species), which sensitizes sensory hair cells. Other properties of this unique fluid remain elusive, owing to its minuscule volume in rodent cochlea. We therefore developed a technique to collect high-purity endolymph from mouse cochleae. Comprehensive proteomic analysis of sampled endolymph using liquid chromatography with mass spectrometry identified 301 proteins, dominated by molecules engaged in immunity and proteostasis. Approximately 30% of these proteins were undetectable in our perilymph. A combination of mass spectrometry and different approaches revealed that, compared to perilymph, endolymph was enriched with α2-macroglobulin, osteopontin, apolipoprotein D, apolipoprotein E, and apolipoprotein J/clusterin. In other cells or tissues, α2-macroglobulin, apolipoprotein E, and apolipoprotein J contribute to the clearance of degraded proteins from extracellular fluid. Altogether, with the proteins described here, endolymph may play a protective role in stabilizing cochlear homeostasis.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.