A general optimization framework for nanofabrication using shadow sphere Lithography: A case study on chiral nanohole arrays.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-14 DOI:10.1016/j.jcis.2024.11.086
Xinyi Chen, Mingyu Cheng, Jinglan Zhang, Yuxia Wang, Chong Chen, Qian Zhang, Yongxin Zhang, Xingguo Wang, Gang Zhang, Bin Ai
{"title":"A general optimization framework for nanofabrication using shadow sphere Lithography: A case study on chiral nanohole arrays.","authors":"Xinyi Chen, Mingyu Cheng, Jinglan Zhang, Yuxia Wang, Chong Chen, Qian Zhang, Yongxin Zhang, Xingguo Wang, Gang Zhang, Bin Ai","doi":"10.1016/j.jcis.2024.11.086","DOIUrl":null,"url":null,"abstract":"<p><p>Shadow sphere lithography (SSL) offers unparalleled advantages in fabricating complex nanostructures, yet optimizing these structures remains challenging due to vast parameter spaces. This study presents a general optimization framework for SSL-fabricated nanostructures, demonstrated through chiral metamaterials. The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML) analysis of finite-difference time-domain (FDTD) simulations. Applied to rotated nanohole arrays (RHAs), this framework efficiently navigates a 7200-structure parameter space, identifying optimal configurations with circular dichroism (CD) and g-factor up to 3.23˚ and 0.28, respectively. Experimental validation of optimized RHAs shows good agreement with predictions, exhibiting twice the chiral response of random configurations. Notably, the framework reduces the dataset by 86%, significantly decreasing computational costs. This optimization framework enables faster, more systematic, and more efficient optimization of structures manufactured using SSL, potentially accelerating discoveries in nanophotonics, plasmonics, and chiral sensing applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 Pt B","pages":"202-213"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Shadow sphere lithography (SSL) offers unparalleled advantages in fabricating complex nanostructures, yet optimizing these structures remains challenging due to vast parameter spaces. This study presents a general optimization framework for SSL-fabricated nanostructures, demonstrated through chiral metamaterials. The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML) analysis of finite-difference time-domain (FDTD) simulations. Applied to rotated nanohole arrays (RHAs), this framework efficiently navigates a 7200-structure parameter space, identifying optimal configurations with circular dichroism (CD) and g-factor up to 3.23˚ and 0.28, respectively. Experimental validation of optimized RHAs shows good agreement with predictions, exhibiting twice the chiral response of random configurations. Notably, the framework reduces the dataset by 86%, significantly decreasing computational costs. This optimization framework enables faster, more systematic, and more efficient optimization of structures manufactured using SSL, potentially accelerating discoveries in nanophotonics, plasmonics, and chiral sensing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用影球光刻技术进行纳米加工的总体优化框架:手性纳米孔阵列案例研究。
影球光刻技术(SSL)在制造复杂纳米结构方面具有无与伦比的优势,但由于参数空间巨大,优化这些结构仍然具有挑战性。本研究针对 SSL 制造的纳米结构提出了一个通用优化框架,并通过手性超材料进行了演示。该方法结合了定制的 SSL 程序、用于消除冗余结构的新型数学模型以及有限差分时域(FDTD)模拟的机器学习(ML)分析。该框架应用于旋转纳米孔阵列(RHA),能有效地浏览 7200 个结构参数空间,识别出圆周二色性(CD)和 g 因子分别高达 3.23˚ 和 0.28 的最佳配置。对优化的 RHA 进行的实验验证表明,它们与预测结果非常吻合,手性响应是随机配置的两倍。值得注意的是,该框架将数据集减少了 86%,大大降低了计算成本。这种优化框架能更快、更系统、更高效地优化使用 SSL 制造的结构,从而有可能加速纳米光子学、等离子体学和手性传感应用的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. Separator modification with a high-entropy hydroxyphosphate, Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), for high-performance Li-S batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1