{"title":"PDLIM1, a novel miR-3940-5p target, regulates the malignant progression of diffuse large B-cell lymphoma.","authors":"Jinfeng Zhu, Huifang Xiao, Chuntuan Li, Xiaofeng Li, Jinyang Zheng, Xihu Yao, Shaoxiong Wang, Xiongpeng Zhu","doi":"10.1080/15384047.2024.2429175","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>PDZ And LIM domain protein 1 (PDLIM1), a protein-coding gene, has been widely reported to exhibit differential expression patterns across various human cancers, including hematological malignancies. This study aimed to investigate PDLIM1 expression pattern and its functional role in diffuse large B-cell lymphoma (DLBCL) both <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Methods: </strong>PDLIM1 expression patterns were reanalyzed using data from the Gene Expression Omnibus, and the results were subsequently validated in patient tissue samples and a panel of four DLBCL cell lines. MicroRNA-3940-5p (miR-3940-5p) was identified as an upstream regulator of PDLIM1. The interaction between PDLIM1 and miR-3940-5p and its effects on DLBCL cellular activities and cancer development were further explored using a DLBCL mouse model.</p><p><strong>Results: </strong>Elevated PDLIM1 expression was observed in DLBCL cells and tissues. Reduced cell proliferation and increased DLBCL cell apoptosis were observed following the knockdown of this gene. Furthermore, short hairpin RNA (shRNA)-mediated PDLIM1 knockdown diminished tumorigenesis of DLBCL cells in nude mice. miR-3940-5p was identified as an upstream regulator of PDLIM1. PDLIM1 expression and function were negatively modulated by the upregulation of miR-3940-5p, consequently affecting the malignant phenotype of DLBCL cells.</p><p><strong>Conclusion: </strong>These findings suggest that the miR-3940-5p/PDLIM1 axis may play a crucial role in DLBCL pathogenesis and could potentially be exploited for therapeutic interventions.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2429175"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2429175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: PDZ And LIM domain protein 1 (PDLIM1), a protein-coding gene, has been widely reported to exhibit differential expression patterns across various human cancers, including hematological malignancies. This study aimed to investigate PDLIM1 expression pattern and its functional role in diffuse large B-cell lymphoma (DLBCL) both in vitro and in vivo.
Methods: PDLIM1 expression patterns were reanalyzed using data from the Gene Expression Omnibus, and the results were subsequently validated in patient tissue samples and a panel of four DLBCL cell lines. MicroRNA-3940-5p (miR-3940-5p) was identified as an upstream regulator of PDLIM1. The interaction between PDLIM1 and miR-3940-5p and its effects on DLBCL cellular activities and cancer development were further explored using a DLBCL mouse model.
Results: Elevated PDLIM1 expression was observed in DLBCL cells and tissues. Reduced cell proliferation and increased DLBCL cell apoptosis were observed following the knockdown of this gene. Furthermore, short hairpin RNA (shRNA)-mediated PDLIM1 knockdown diminished tumorigenesis of DLBCL cells in nude mice. miR-3940-5p was identified as an upstream regulator of PDLIM1. PDLIM1 expression and function were negatively modulated by the upregulation of miR-3940-5p, consequently affecting the malignant phenotype of DLBCL cells.
Conclusion: These findings suggest that the miR-3940-5p/PDLIM1 axis may play a crucial role in DLBCL pathogenesis and could potentially be exploited for therapeutic interventions.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.