Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions.

IF 6 2区 生物学 Q1 MICROBIOLOGY Critical Reviews in Microbiology Pub Date : 2024-11-20 DOI:10.1080/1040841X.2024.2427656
Camila Leiva-Sabadini, Paula Saavedra, Carla Inostroza, Sebastian Aguayo
{"title":"Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions.","authors":"Camila Leiva-Sabadini, Paula Saavedra, Carla Inostroza, Sebastian Aguayo","doi":"10.1080/1040841X.2024.2427656","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as <i>Streptococcus mutans</i>) as well as periodontal pathogens (including the red complex pathogens <i>Porphyromonas gingivalis</i>, <i>Tannerella forsythia</i>, and <i>Treponema denticola</i>) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2024.2427656","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as Streptococcus mutans) as well as periodontal pathogens (including the red complex pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与龋齿和牙周病有关的口腔细菌产生的胞外囊泡:在微生物-宿主和种间相互作用中的作用。
细胞外囊泡(EVs)是一种源自细胞膜的结构,大小在 20-400 纳米之间。在细菌中,EVs 在分子分泌、细胞壁生物生成、细胞-细胞通讯、生物膜发展以及宿主-病原体相互作用中发挥着至关重要的作用。尽管有关细菌衍生囊泡的报道越来越多,但总结口腔细菌 EVs、其货物及其主要生物学功能的研究仍然数量有限。因此,本综述旨在介绍有关口腔细菌衍生囊泡的最新研究,以及它们如何调节口腔中的各种生理和病理过程,包括龋齿和牙周炎等高度相关疾病的发病机制及其全身并发症。总体而言,龋齿相关细菌(如变异链球菌)和牙周病病原体(包括红色复合病原体牙龈卟啉单胞菌、连翘坦奈氏菌和牙周特雷波纳菌)都被证明会产生携带一系列毒性因子和分子的 EVs,这些因子和分子参与生物膜和免疫调节、细菌粘附和细胞外基质降解。由于细菌 EV 的产生受基因型和环境变化的影响很大,因此抑制 EV 的产生和分泌仍是未来防治口腔疾病的一个关键潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Microbiology
Critical Reviews in Microbiology 生物-微生物学
CiteScore
14.70
自引率
0.00%
发文量
99
期刊介绍: Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.
期刊最新文献
The prospect of using nanotechnology to prevent and treat infections caused by Listeria monocytogenes. Could Neisseria gonorrhoeae have carcinogenic potential? A critical review of current evidence. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Microbial biosynthesis of nucleos(t)ide analogs: applications, and engineering optimization. Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1