{"title":"Vegetation and carbon sink response to water level changes in a seasonal lake wetland.","authors":"Weiyu Huang, Xin Liu, Lin Tian, Geng Cui, Yan Liu","doi":"10.3389/fpls.2024.1445906","DOIUrl":null,"url":null,"abstract":"<p><p>Water level fluctuations are among the main factors affecting the development of wetland vegetation communities, carbon sinks, and ecological processes. Hongze Lake is a typical seasonal lake wetland in the Huaihe River Basin. Its water levels have experienced substantial fluctuations because of climate change, as well as gate and dam regulations. In this study, long-term cloud-free remote sensing images of water body area, net plant productivity (NPP), gross primary productivity (GPP), and Fractional vegetation cover (FVC) of the wetlands of Hongze Lake were obtained from multiple satellites by Google Earth Engine (GEE) from 2006 to 2023. The trends in FVC were analyzed using a combined Theil-Sen estimator and Mann-Kendall (MK) test. Linear regression was employed to analyze the correlation between the area of water bodies and that of different degrees of FVC. Additionally, annual frequencies of various water levels were constructed to explore their association with GPP, NPP, and FVC.The results showed that water level fluctuations significantly influence the spatial and temporal patterns of wetland vegetation cover and carbon sinks, with a significant correlation (P<0.05) between water levels and vegetation distribution. Following extensive restoration efforts, the carbon sink capacity of the Hongze Lake wetland has increased. However, it is essential to consider the carbon sink capacity in areas with low vegetation cover, for the lakeshore zone with a higher inundation frequency and low vegetation cover had a lower carbon sink capacity. These findings provide a scientific basis for the establishment of carbon sink enhancement initiatives, restoration programs, and policies to improve the ecological value of wetland ecosystem conservation areas.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1445906"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1445906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water level fluctuations are among the main factors affecting the development of wetland vegetation communities, carbon sinks, and ecological processes. Hongze Lake is a typical seasonal lake wetland in the Huaihe River Basin. Its water levels have experienced substantial fluctuations because of climate change, as well as gate and dam regulations. In this study, long-term cloud-free remote sensing images of water body area, net plant productivity (NPP), gross primary productivity (GPP), and Fractional vegetation cover (FVC) of the wetlands of Hongze Lake were obtained from multiple satellites by Google Earth Engine (GEE) from 2006 to 2023. The trends in FVC were analyzed using a combined Theil-Sen estimator and Mann-Kendall (MK) test. Linear regression was employed to analyze the correlation between the area of water bodies and that of different degrees of FVC. Additionally, annual frequencies of various water levels were constructed to explore their association with GPP, NPP, and FVC.The results showed that water level fluctuations significantly influence the spatial and temporal patterns of wetland vegetation cover and carbon sinks, with a significant correlation (P<0.05) between water levels and vegetation distribution. Following extensive restoration efforts, the carbon sink capacity of the Hongze Lake wetland has increased. However, it is essential to consider the carbon sink capacity in areas with low vegetation cover, for the lakeshore zone with a higher inundation frequency and low vegetation cover had a lower carbon sink capacity. These findings provide a scientific basis for the establishment of carbon sink enhancement initiatives, restoration programs, and policies to improve the ecological value of wetland ecosystem conservation areas.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.