The relevance of combined testing of cerebrospinal fluid glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 in multiple sclerosis and peripheral neuropathy.
Peter Csecsei, Peter Acs, Marianna Gottschal, Piroska Imre, Egon Miklos, Diana Simon, Szabina Erdo-Bonyar, Timea Berki, Laszlo Zavori, Reka Varnai
{"title":"The relevance of combined testing of cerebrospinal fluid glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 in multiple sclerosis and peripheral neuropathy.","authors":"Peter Csecsei, Peter Acs, Marianna Gottschal, Piroska Imre, Egon Miklos, Diana Simon, Szabina Erdo-Bonyar, Timea Berki, Laszlo Zavori, Reka Varnai","doi":"10.1007/s10072-024-07790-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study investigates the significance of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL-1) in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and peripheral neuropathy (PN).</p><p><strong>Methods: </strong>We included 41 MS patients, 35 PN patients, and 36 controls across 5 sites. MS patient data included lesion counts, disease activity, albumin quotient, and Expanded Disability Status Scale (EDSS) scores. PN patients included those with acute and chronic inflammatory demyelinating polyneuropathy and sensorimotor neuropathy based on nerve conduction studies. CSF concentrations of GFAP and UCHL-1 were measured using the MILLIPLEX Map Human Neuroscience Magnetic Bead Panel 1.</p><p><strong>Results: </strong>Both GFAP and UCHL-1 levels were significantly higher in the two patient groups compared to controls. In the MS group, GFAP showed a strong correlation with disease duration, EDSS score, non-enhancing lesions, and the CSF/blood albumin quotient. UCHL-1 levels were significantly higher in patients with active disease (gadolinium-enhancing lesions). The combination of UCHL-1 and GFAP improved diagnostic accuracy (AUC 0.895, 95% CI 0.780-1.000) compared to the independent measurement of either marker for indicating Gd-negative lesions. In the PN group, CSF GFAP levels were significantly lower in patients with purely demyelinating neuropathy compared to those with axonal or mixed neuropathy.</p><p><strong>Conclusion: </strong>GFAP serves as a sensitive marker for axonal damage in PN, while UCHL-1 closely correlates with disease activity in MS patients.</p>","PeriodicalId":19191,"journal":{"name":"Neurological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10072-024-07790-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study investigates the significance of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL-1) in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and peripheral neuropathy (PN).
Methods: We included 41 MS patients, 35 PN patients, and 36 controls across 5 sites. MS patient data included lesion counts, disease activity, albumin quotient, and Expanded Disability Status Scale (EDSS) scores. PN patients included those with acute and chronic inflammatory demyelinating polyneuropathy and sensorimotor neuropathy based on nerve conduction studies. CSF concentrations of GFAP and UCHL-1 were measured using the MILLIPLEX Map Human Neuroscience Magnetic Bead Panel 1.
Results: Both GFAP and UCHL-1 levels were significantly higher in the two patient groups compared to controls. In the MS group, GFAP showed a strong correlation with disease duration, EDSS score, non-enhancing lesions, and the CSF/blood albumin quotient. UCHL-1 levels were significantly higher in patients with active disease (gadolinium-enhancing lesions). The combination of UCHL-1 and GFAP improved diagnostic accuracy (AUC 0.895, 95% CI 0.780-1.000) compared to the independent measurement of either marker for indicating Gd-negative lesions. In the PN group, CSF GFAP levels were significantly lower in patients with purely demyelinating neuropathy compared to those with axonal or mixed neuropathy.
Conclusion: GFAP serves as a sensitive marker for axonal damage in PN, while UCHL-1 closely correlates with disease activity in MS patients.
期刊介绍:
Neurological Sciences is intended to provide a medium for the communication of results and ideas in the field of neuroscience. The journal welcomes contributions in both the basic and clinical aspects of the neurosciences. The official language of the journal is English. Reports are published in the form of original articles, short communications, editorials, reviews and letters to the editor. Original articles present the results of experimental or clinical studies in the neurosciences, while short communications are succinct reports permitting the rapid publication of novel results. Original contributions may be submitted for the special sections History of Neurology, Health Care and Neurological Digressions - a forum for cultural topics related to the neurosciences. The journal also publishes correspondence book reviews, meeting reports and announcements.