Soil compaction sensing mechanisms and root responses.

IF 17.3 1区 生物学 Q1 PLANT SCIENCES Trends in Plant Science Pub Date : 2024-11-18 DOI:10.1016/j.tplants.2024.10.014
Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey
{"title":"Soil compaction sensing mechanisms and root responses.","authors":"Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey","doi":"10.1016/j.tplants.2024.10.014","DOIUrl":null,"url":null,"abstract":"<p><p>Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.10.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤压实感应机制和根系反应。
土壤压实是一项农业挑战,对土壤的物理、化学和生物特性有着深远的影响。土壤板结会增加机械阻抗,减少水分渗透、气体交换和生物活动,从而导致剧烈变化。土壤板结会阻碍根系生长,限制植物汲取养分和水分的能力。最新研究发现,植物根系能感知土壤板结,是因为根尖及其周围的乙烯积累较多。乙烯协调辅助素和脱落酸作为下游信号,调节根系对土壤板结的适应性反应。在这篇综述中,我们描述了从细胞到器官范围的土壤压实所造成的变化,并探讨了有关植物根系压实感知和响应的最新研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
期刊最新文献
Do storage reserves contribute to plant phenotypic plasticity? Plasticity in plant mating systems. Soil compaction sensing mechanisms and root responses. The whole and its parts: cell-specific functions of brassinosteroids. Ecological intensification index: reducing global footprint of agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1