Shiyi Lv, Lin Zhang, Min Wu, Shuangshuang Zhu, Yixue Wang, Layang Liu, Yunxuan Li, Ting Zhang, Yujie Wu, Huang Chen, Mingyao Liu, Zhengfang Yi
{"title":"IRE1α inhibitor reduces cisplatin resistance in ovarian cancer by modulating IRE1α/XBP1 pathway.","authors":"Shiyi Lv, Lin Zhang, Min Wu, Shuangshuang Zhu, Yixue Wang, Layang Liu, Yunxuan Li, Ting Zhang, Yujie Wu, Huang Chen, Mingyao Liu, Zhengfang Yi","doi":"10.1007/s13402-024-01010-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer, a leading cause of gynecological cancer deaths globally, poses significant treatment challenges. Cisplatin (CDDP) is the first treatment choice for ovarian cancer and it is initially effective. However, 80% of ovarian cancer patients eventually relapse and develop resistance, resulting in chemotherapy failure. Therefore, finding new treatment combinations to overcome ovarian cancer resistance can provide a new tactic to improve the ovarian cancer patients' survival rate. We first identified activation of the Unfolded Protein Response (UPR) in CDDP-resistant ovarian cancer cells, implicating the IRE1α/XBP1 pathway in promoting resistance. Our findings demonstrate that inhibiting IRE1α signaling can re-sensitizes resistant cells to CDDP in vivo and in vitro, suggesting that IRE1α inhibitor used in conjunction with CDDP presumably could merge as a novel therapeutic strategy. Here, our research highlights the critical role of IRE1α signaling in mediating CDDP resistance, and paves the way for improved treatment options through combinatorial therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01010-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer, a leading cause of gynecological cancer deaths globally, poses significant treatment challenges. Cisplatin (CDDP) is the first treatment choice for ovarian cancer and it is initially effective. However, 80% of ovarian cancer patients eventually relapse and develop resistance, resulting in chemotherapy failure. Therefore, finding new treatment combinations to overcome ovarian cancer resistance can provide a new tactic to improve the ovarian cancer patients' survival rate. We first identified activation of the Unfolded Protein Response (UPR) in CDDP-resistant ovarian cancer cells, implicating the IRE1α/XBP1 pathway in promoting resistance. Our findings demonstrate that inhibiting IRE1α signaling can re-sensitizes resistant cells to CDDP in vivo and in vitro, suggesting that IRE1α inhibitor used in conjunction with CDDP presumably could merge as a novel therapeutic strategy. Here, our research highlights the critical role of IRE1α signaling in mediating CDDP resistance, and paves the way for improved treatment options through combinatorial therapy.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.