Recognition of autism in subcortical brain volumetric images using autoencoding-based region selection method and Siamese Convolutional Neural Network.
Anas Abu-Doleh, Isam F Abu-Qasmieh, Hiam H Al-Quran, Ihssan S Masad, Lamis R Banyissa, Marwa Alhaj Ahmad
{"title":"Recognition of autism in subcortical brain volumetric images using autoencoding-based region selection method and Siamese Convolutional Neural Network.","authors":"Anas Abu-Doleh, Isam F Abu-Qasmieh, Hiam H Al-Quran, Ihssan S Masad, Lamis R Banyissa, Marwa Alhaj Ahmad","doi":"10.1016/j.ijmedinf.2024.105707","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interactions and behavior. Accurate and early diagnosis of ASD is still challenging even with the improvements in neuroimaging technology and machine learning algorithms. It's challenging because of the wide range of symptoms, delayed appearance of symptoms, and the subjective nature of diagnosis. In this study, the aim is to enhance ASD recognition by focusing on brain subcortical regions, which are critical for understanding ASD pathology.</p><p><strong>Methodology: </strong>First, subcortical structures were extracted from a collection of brain MRI datasets using sophisticated processing steps. Next, a 3D autoencoder was trained on these 3D images to help identify brain regions related to ASD. Two distinct feature selection methods were then applied to the features extracted from the encoder. The highest-ranked features were iteratively selected and increased to reconstruct a specific percentage of the brain that represents the most relevant parts for ASD. Finally, a Siamese Convolutional Neural Network (SCNN) was employed as the classifier model.</p><p><strong>Results: </strong>The 3D autoencoder stage helped in identifying and reconstructing the significant subcortical regions related to ASD. Based on the studied dataset, high agreement in regions like the Putamen and Pallidum indicated the critical nature of these structures in distinguishing Autism from controls cases. Subsequently, applying SCNN on these selected subcortical regions yielded promising results. For example, using the classifier on the output regions identified by the Mutual Information (MI) features selection method achieved the highest accuracy of 0.66.</p><p><strong>Conclusions: </strong>This study shows that using a two-stage model involving autoencoder and SCNN can notably improve the classification of ASD from brain MRI volumetric images. Applying an iterative feature extraction approach allowed to achieve a more accurate identification of ASD-related brain areas. This two-stage approach not only improved classification performance but also enhanced the interpretability of the neuroimaging data.</p>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"194 ","pages":"105707"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijmedinf.2024.105707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interactions and behavior. Accurate and early diagnosis of ASD is still challenging even with the improvements in neuroimaging technology and machine learning algorithms. It's challenging because of the wide range of symptoms, delayed appearance of symptoms, and the subjective nature of diagnosis. In this study, the aim is to enhance ASD recognition by focusing on brain subcortical regions, which are critical for understanding ASD pathology.
Methodology: First, subcortical structures were extracted from a collection of brain MRI datasets using sophisticated processing steps. Next, a 3D autoencoder was trained on these 3D images to help identify brain regions related to ASD. Two distinct feature selection methods were then applied to the features extracted from the encoder. The highest-ranked features were iteratively selected and increased to reconstruct a specific percentage of the brain that represents the most relevant parts for ASD. Finally, a Siamese Convolutional Neural Network (SCNN) was employed as the classifier model.
Results: The 3D autoencoder stage helped in identifying and reconstructing the significant subcortical regions related to ASD. Based on the studied dataset, high agreement in regions like the Putamen and Pallidum indicated the critical nature of these structures in distinguishing Autism from controls cases. Subsequently, applying SCNN on these selected subcortical regions yielded promising results. For example, using the classifier on the output regions identified by the Mutual Information (MI) features selection method achieved the highest accuracy of 0.66.
Conclusions: This study shows that using a two-stage model involving autoencoder and SCNN can notably improve the classification of ASD from brain MRI volumetric images. Applying an iterative feature extraction approach allowed to achieve a more accurate identification of ASD-related brain areas. This two-stage approach not only improved classification performance but also enhanced the interpretability of the neuroimaging data.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.