{"title":"Histone modification H3K27me3 is essential during chilling-induced flowering in Litchi chinensis","authors":"Xifen Pan, Xingyu Lu, Lijie Huang, Zhiqun Hu, Maogen Zhuo, Yanchun Ji, Bingqi Lin, Jianqin Luo, Peitao Lü, Biyan Zhou","doi":"10.1093/plphys/kiae619","DOIUrl":null,"url":null,"abstract":"Litchi (Litchi chinensis), a prominent fruit tree in the Sapindaceae, initiates flowering in response to low autumn and winter temperatures. This study investigates the epigenetic regulation of this process, focusing on the marks histone H3 lysine 27 trimethylation (H3K27me3) and its deposition genes during the chilling-induced floral induction and initiation stages. Our genomic analysis delineated the H3K27me3 deposition landscape across the pre-floral induction (PFId), floral induction (FId), and floral initiation (FIn) stages. We identified 5,635 differentially H3K27me3-modified genes (DHGs) in buds and 4,801 DHGs in leaves. Integration of the RNA-seq and ChIP-seq datasets identified 1,001 differentially regulated genes (DRGs) in buds and 675 DRGs in leaves, offering insights into the genes potentially targeted by H3K27me3. To probe the functional role of H3K27me3, we employed GSK343, a histone H3 lysine methyltransferase inhibitor. Treatment with GSK343 during the chilling-induced flowering process led to reduced H3K27me3 deposition at the TREHALOSE-6-PHOSPHATE SYNTHASE 1 (LcTPS1) and FRIGIDA (LcFRI) loci, resulting in increased gene expression. This manipulation delayed flowering and reduced flowering rates, confirming the pivotal role of H3K27me3 in chilling-induced flowering in litchi. Gene co-expression network analysis identified SHORT VEGETATIVE PHASE 10 (LcSVP10) as a crucial regulator in litchi flowering. Overexpression of LcSVP10 in Arabidopsis thaliana delayed flowering, indicating a conserved function in flowering time control. Our results elucidate the molecular and epigenetic mechanisms that govern floral induction in litchi and highlight the potential of epigenetic modifications to regulate flowering time in horticultural plants.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"99 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae619","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Litchi (Litchi chinensis), a prominent fruit tree in the Sapindaceae, initiates flowering in response to low autumn and winter temperatures. This study investigates the epigenetic regulation of this process, focusing on the marks histone H3 lysine 27 trimethylation (H3K27me3) and its deposition genes during the chilling-induced floral induction and initiation stages. Our genomic analysis delineated the H3K27me3 deposition landscape across the pre-floral induction (PFId), floral induction (FId), and floral initiation (FIn) stages. We identified 5,635 differentially H3K27me3-modified genes (DHGs) in buds and 4,801 DHGs in leaves. Integration of the RNA-seq and ChIP-seq datasets identified 1,001 differentially regulated genes (DRGs) in buds and 675 DRGs in leaves, offering insights into the genes potentially targeted by H3K27me3. To probe the functional role of H3K27me3, we employed GSK343, a histone H3 lysine methyltransferase inhibitor. Treatment with GSK343 during the chilling-induced flowering process led to reduced H3K27me3 deposition at the TREHALOSE-6-PHOSPHATE SYNTHASE 1 (LcTPS1) and FRIGIDA (LcFRI) loci, resulting in increased gene expression. This manipulation delayed flowering and reduced flowering rates, confirming the pivotal role of H3K27me3 in chilling-induced flowering in litchi. Gene co-expression network analysis identified SHORT VEGETATIVE PHASE 10 (LcSVP10) as a crucial regulator in litchi flowering. Overexpression of LcSVP10 in Arabidopsis thaliana delayed flowering, indicating a conserved function in flowering time control. Our results elucidate the molecular and epigenetic mechanisms that govern floral induction in litchi and highlight the potential of epigenetic modifications to regulate flowering time in horticultural plants.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.