Joao Ramos, Valerie Laux, Sax A. Mason, Marie-Hélène Lemée, Matthew W. Bowler, Kay Diederichs, Michael Haertlein, V. Trevor Forsyth, Estelle Mossou, Sine Larsen, Annette E. Langkilde
{"title":"Structure and dynamics of the active site of hen egg-white lysozyme from atomic resolution neutron crystallography","authors":"Joao Ramos, Valerie Laux, Sax A. Mason, Marie-Hélène Lemée, Matthew W. Bowler, Kay Diederichs, Michael Haertlein, V. Trevor Forsyth, Estelle Mossou, Sine Larsen, Annette E. Langkilde","doi":"10.1016/j.str.2024.10.030","DOIUrl":null,"url":null,"abstract":"Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and D<sub>2</sub>O buffer-exchanged HEWL from 0.91 and 1.1 Å resolution neutron diffraction data, respectively. These structures were obtained at room temperature and acidic pH, representing the active state of the enzyme. The unambiguous assignment of hydrogen positions based on the neutron scattering length density maps elucidates the roles of Asn44, Asn46, Asn59, and nearby water molecules in the stabilization of Asp52. Additionally, the identification of hydrogen positions reveals unique details of lysozyme’s folding, hydrogen (H)/deuterium (D) exchange, and side chain disorder.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"99 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and D2O buffer-exchanged HEWL from 0.91 and 1.1 Å resolution neutron diffraction data, respectively. These structures were obtained at room temperature and acidic pH, representing the active state of the enzyme. The unambiguous assignment of hydrogen positions based on the neutron scattering length density maps elucidates the roles of Asn44, Asn46, Asn59, and nearby water molecules in the stabilization of Asp52. Additionally, the identification of hydrogen positions reveals unique details of lysozyme’s folding, hydrogen (H)/deuterium (D) exchange, and side chain disorder.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.