Guoqing Ma, Di Zhou, Yunlong Xie, Shuhan Zheng, Meifeng Liu, Leili Tan, Zhen Liu, Fei Liu, Yao Li, Zhen Ma, Yongjun Zhang, Lin Lin, Min Zeng, Xiuzhang Wang, Saiyu Wang, Hong Li, Shuai Dong, Jun-Ming Liu
{"title":"High temperature magnetoelectric effect in Fe2TeO6","authors":"Guoqing Ma, Di Zhou, Yunlong Xie, Shuhan Zheng, Meifeng Liu, Leili Tan, Zhen Liu, Fei Liu, Yao Li, Zhen Ma, Yongjun Zhang, Lin Lin, Min Zeng, Xiuzhang Wang, Saiyu Wang, Hong Li, Shuai Dong, Jun-Ming Liu","doi":"10.1016/j.jmat.2024.100977","DOIUrl":null,"url":null,"abstract":"Fe<sub>2</sub>TeO<sub>6</sub> has long been considered as a promising high-temperature magnetoelectric (ME) material, while the magnetoelectricity and magnetic ground state of Fe<sub>2</sub>TeO<sub>6</sub> have not been well characterized or understood yet. In the present work, we report the systematical study of magnetism, ferroelectricity, ME effect, first principles calculation, and Monte Carlo simulation of Fe<sub>2</sub>TeO<sub>6</sub> single crystals. Fe<sub>2</sub>TeO<sub>6</sub> exhibits linear ME effect below <em>T</em><sub>N</sub> ∼ 208 K, and only diagonal ME coefficients appears to be non-zero, which agrees with the magnetic point group <em>4/m'm'm'</em>. The calculated magnetic ground state agrees with previous neutron diffraction, and the strong intra(inter)-bilayer interactions coincide with the high <em>T</em><sub>N</sub> of Fe<sub>2</sub>TeO<sub>6</sub>. This work will contribute to the understanding of A<sub>2</sub>BO<sub>6</sub> ME family and the exploration of high temperature ME materials.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"191 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100977","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe2TeO6 has long been considered as a promising high-temperature magnetoelectric (ME) material, while the magnetoelectricity and magnetic ground state of Fe2TeO6 have not been well characterized or understood yet. In the present work, we report the systematical study of magnetism, ferroelectricity, ME effect, first principles calculation, and Monte Carlo simulation of Fe2TeO6 single crystals. Fe2TeO6 exhibits linear ME effect below TN ∼ 208 K, and only diagonal ME coefficients appears to be non-zero, which agrees with the magnetic point group 4/m'm'm'. The calculated magnetic ground state agrees with previous neutron diffraction, and the strong intra(inter)-bilayer interactions coincide with the high TN of Fe2TeO6. This work will contribute to the understanding of A2BO6 ME family and the exploration of high temperature ME materials.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.