Fast modulation of a long-wave infrared laser based on the two-photon absorption of CO2

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-20 DOI:10.1063/5.0242976
Zhenzhen Xie, Zhiyong Li, Ziren Zhu, Yu Liu, Hai Wang, Ziming Wang, Fangjin Ning, Hui Li, Zhaoxiang Wang, Liemao Hu, Changjun Ke, Yijun Zheng, Wanli Zhao, Rongqing Tan
{"title":"Fast modulation of a long-wave infrared laser based on the two-photon absorption of CO2","authors":"Zhenzhen Xie, Zhiyong Li, Ziren Zhu, Yu Liu, Hai Wang, Ziming Wang, Fangjin Ning, Hui Li, Zhaoxiang Wang, Liemao Hu, Changjun Ke, Yijun Zheng, Wanli Zhao, Rongqing Tan","doi":"10.1063/5.0242976","DOIUrl":null,"url":null,"abstract":"In this work, we report a long-wave infrared (LWIR) modulator based on the two-photon absorption of CO2 gas. The effect of gas pressure and laser power on the modulation under different wavelengths is discussed. A maximum modulation depth of 21.5% with a rise time (full time) less than 20 ns for a 9.36 μm laser was achieved. The gaseous modulator, which adopts a 2.75 μm laser as the pumping source, is capable of converting the pulse characteristics of the pump light into the modulation of the long-wave infrared light. It demonstrates promising potential for applications in the rapid optical modulation of LWIR lasers.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"191 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0242976","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we report a long-wave infrared (LWIR) modulator based on the two-photon absorption of CO2 gas. The effect of gas pressure and laser power on the modulation under different wavelengths is discussed. A maximum modulation depth of 21.5% with a rise time (full time) less than 20 ns for a 9.36 μm laser was achieved. The gaseous modulator, which adopts a 2.75 μm laser as the pumping source, is capable of converting the pulse characteristics of the pump light into the modulation of the long-wave infrared light. It demonstrates promising potential for applications in the rapid optical modulation of LWIR lasers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二氧化碳双光子吸收的长波红外激光器的快速调制
在这项工作中,我们报告了一种基于二氧化碳气体双光子吸收的长波红外(LWIR)调制器。我们讨论了气体压力和激光功率对不同波长下调制的影响。在 9.36 μm 激光下,最大调制深度为 21.5%,上升时间(全时)小于 20 ns。气体调制器采用 2.75 μm 激光作为泵浦源,能够将泵浦光的脉冲特性转换为长波红外光的调制特性。它在长波红外激光器的快速光调制方面显示出巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Detection efficiency characterization for free-space single-photon detectors: Measurement facility and wavelength-dependence investigation Al@Al2O3 core-shell plasmonic design for the dilemma between high responsivity and low dark current of MoS2 photodetector High saturation power anti-waveguide asymmetric super-large optical cavity SOA with low confinement factor and ultra-narrow vertical divergence angle Antidot lattices for magnetic reservoir computing Decisive role of organic fluorophore and surface defect state in the photoluminescence of carbon quantum dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1