Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-21 DOI:10.1038/s41467-024-54463-z
Yue Sun, Xi Wu, Jianguo Li, Milad Radiom, Raffaele Mezzenga, Chandra Shekhar Verma, Jing Yu, Ali Miserez
{"title":"Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules","authors":"Yue Sun, Xi Wu, Jianguo Li, Milad Radiom, Raffaele Mezzenga, Chandra Shekhar Verma, Jing Yu, Ali Miserez","doi":"10.1038/s41467-024-54463-z","DOIUrl":null,"url":null,"abstract":"<p>Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. We also demonstrate that the optimized PSPs CMs display excellent transfection efficiency in hard-to-transfect cells such as primary fibroblasts and immune cells. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications such as protein, gene, and immune cell therapies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"230 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54463-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. We also demonstrate that the optimized PSPs CMs display excellent transfection efficiency in hard-to-transfect cells such as primary fibroblasts and immune cells. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications such as protein, gene, and immune cell therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可编程材料特性的相分离多肽共凝胶,用于大分子的细胞内普遍输送
相分离肽(PSPs)自组装成凝聚微滴(CMs)是一类很有前景的细胞内递送载体,可释放用于各种治疗的大分子模式。然而,制约 CMs 细胞内吸收和释放动力学的分子机制仍未确定。在这里,我们系统地操纵了 PSPs 的序列,以揭示其分子结构、所产生的 CMs 的物理性质及其递送功效之间的关系。我们的研究表明,几个氨基酸的改变就足以调节 CMs 的粘弹性,使其呈凝胶状或液态,并调节其与细胞膜的结合相互作用,从而调整细胞内货物释放的动力学。我们还证明,经过优化的 PSPs CMs 在原代成纤维细胞和免疫细胞等难以转染的细胞中显示出卓越的转染效率。我们的发现为精确编程 PSP CMs 的材料特性提供了分子指导,并可根据货物模式实现可调的细胞吸收和释放动力学,这对蛋白质、基因和免疫细胞疗法等治疗应用具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure Structural insight into the distinct regulatory mechanism of the HEPN–MNT toxin-antitoxin system in Legionella pneumophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1