Yuteng Weng, Yanhuizhi Feng, Zeyuan Li, Shuyu Xu, Di Wu, Jie Huang, Haicheng Wang, Zuolin Wang
{"title":"Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells","authors":"Yuteng Weng, Yanhuizhi Feng, Zeyuan Li, Shuyu Xu, Di Wu, Jie Huang, Haicheng Wang, Zuolin Wang","doi":"10.1038/s41467-024-54640-0","DOIUrl":null,"url":null,"abstract":"<p>The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54640-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.