{"title":"An Oral PROTAC Targeting HPK1 Degradation Potentiates Anti-Solid Tumor Immunity","authors":"Yuejun Yao, Mingfei Wu, Yanfang Wang, Ziyan Liao, Yinxian Yang, Yun Liu, Jiaqi Shi, Wei Wu, Xinwei Wei, Jianchang Xu, Yugang Guo, Xiaowu Dong, Jinxin Che, Jinqiang Wang, Zhen Gu","doi":"10.1002/adma.202411454","DOIUrl":null,"url":null,"abstract":"Hematopoietic progenitor pinase1 (HPK1) knockout has been identified as an efficient route to enhance anti-tumor immune response. Here, this work develops an oral proteolysis targeting chimera (PROTAC) targeting HPK1 to efficiently and selectively degrade HPK1 to augment immunotherapeutic outcomes. In a postoperative tumor model of human cervical cancer in NSG mice, the orally-administrated PROTAC can reach tumors, down-regulate HPK1 levels in locally-administrated CAR-T cells, and promote their efficiency in inhibiting solid tumor recurrence, achieving 50% partial response (PR) and 50% complete response (CR). In addition, oral administration of PROTAC can amplify the suppression capability of the anti-PD-L1 antibody on the growth of CT26 solid tumors in BALB/c mice by promoting the infiltration of CD45-positive immune cells from 0.7% to 1.5% and CD3-positive T cells from 0.2% to 0.5% within the tumors.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"7 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hematopoietic progenitor pinase1 (HPK1) knockout has been identified as an efficient route to enhance anti-tumor immune response. Here, this work develops an oral proteolysis targeting chimera (PROTAC) targeting HPK1 to efficiently and selectively degrade HPK1 to augment immunotherapeutic outcomes. In a postoperative tumor model of human cervical cancer in NSG mice, the orally-administrated PROTAC can reach tumors, down-regulate HPK1 levels in locally-administrated CAR-T cells, and promote their efficiency in inhibiting solid tumor recurrence, achieving 50% partial response (PR) and 50% complete response (CR). In addition, oral administration of PROTAC can amplify the suppression capability of the anti-PD-L1 antibody on the growth of CT26 solid tumors in BALB/c mice by promoting the infiltration of CD45-positive immune cells from 0.7% to 1.5% and CD3-positive T cells from 0.2% to 0.5% within the tumors.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.