Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-11-20 DOI:10.1016/j.ensm.2024.103921
Qian Liu, Renshu Huang, Xincheng Liang, Zhixiang Zhai, Dexin Meng, Huyi Yu, Huan Wen, Shibin Yin
{"title":"Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries","authors":"Qian Liu, Renshu Huang, Xincheng Liang, Zhixiang Zhai, Dexin Meng, Huyi Yu, Huan Wen, Shibin Yin","doi":"10.1016/j.ensm.2024.103921","DOIUrl":null,"url":null,"abstract":"The discharge product Li<sub>2</sub>O<sub>2</sub> with a wide band gap requires a high potential to decompose, hindering the practical application of Li–O<sub>2</sub> batteries (LOBs). Herein, a surface acidity regulation strategy is proposed to boost Li<sub>2</sub>O<sub>2</sub> decomposition through doping Mn atoms into Co<sub>3</sub>O<sub>4</sub> catalyst. Experimental results and theoretical calculations demonstrate that the doped Mn atoms increase empty orbitals near the Fermi level to enhance the surface acidity of Co<sub>3</sub>O<sub>4</sub>. Among the doped catalysts, the 15%Mn-doped Co<sub>3</sub>O<sub>4</sub> with a suitable surface acidity of 347.5 μmol g<sup>−1</sup> promotes the electronic transfer from Li<sub>2</sub>O<sub>2</sub> to Co<sub>3</sub>O<sub>4</sub> and coordinates the reduction of the desorption barriers of Li<sup>+</sup> and O<sub>2</sub>, which effectively boosts the decomposition of Li<sub>2</sub>O<sub>2</sub> to reduce the charge overpotential of LOBs, thus achieving a low charge overpotential (1.18 V at 1000 mA g<sup>−1</sup>) and great cyclic stability (350 cycles at 4000 mA g<sup>−1</sup>) in LOBs. Even under the limited specific capacity of 2000 mAh g<sup>−1</sup>, the 15%Mn-doped Co<sub>3</sub>O<sub>4</sub>-based LOBs exhibit a great cycle stability of 250 cycles. This work elucidates the critical role of catalyst surface acidity regulation in boosting Li<sub>2</sub>O<sub>2</sub> decomposition, thus reducing the charge overpotential of LOBs.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"57 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103921","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discharge product Li2O2 with a wide band gap requires a high potential to decompose, hindering the practical application of Li–O2 batteries (LOBs). Herein, a surface acidity regulation strategy is proposed to boost Li2O2 decomposition through doping Mn atoms into Co3O4 catalyst. Experimental results and theoretical calculations demonstrate that the doped Mn atoms increase empty orbitals near the Fermi level to enhance the surface acidity of Co3O4. Among the doped catalysts, the 15%Mn-doped Co3O4 with a suitable surface acidity of 347.5 μmol g−1 promotes the electronic transfer from Li2O2 to Co3O4 and coordinates the reduction of the desorption barriers of Li+ and O2, which effectively boosts the decomposition of Li2O2 to reduce the charge overpotential of LOBs, thus achieving a low charge overpotential (1.18 V at 1000 mA g−1) and great cyclic stability (350 cycles at 4000 mA g−1) in LOBs. Even under the limited specific capacity of 2000 mAh g−1, the 15%Mn-doped Co3O4-based LOBs exhibit a great cycle stability of 250 cycles. This work elucidates the critical role of catalyst surface acidity regulation in boosting Li2O2 decomposition, thus reducing the charge overpotential of LOBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节表面酸度,促进二氧化锰锂分解,降低二氧化锰锂电池的充电过电位
放电产物 Li2O2 具有宽带隙,需要高电位才能分解,这阻碍了锂-氧化物电池(LOB)的实际应用。本文提出了一种表面酸度调节策略,通过在 Co3O4 催化剂中掺杂锰原子来促进 Li2O2 的分解。实验结果和理论计算证明,掺杂的锰原子增加了费米级附近的空轨道,从而提高了 Co3O4 的表面酸度。在掺杂的催化剂中,掺杂 15%Mn 的 Co3O4 具有 347.5 μmol g-1 的合适表面酸度,促进了 Li2O2 向 Co3O4 的电子转移,并协调降低了 Li+ 和 O2 的解吸势垒,从而有效促进了 Li2O2 的分解,降低了 LOB 的电荷过电位,因此实现了 LOB 的低电荷过电位(1000 mA g-1 时为 1.18 V)和高循环稳定性(4000 mA g-1 时循环 350 次)。即使在 2000 mAh g-1 的有限比容量条件下,掺杂 15%锰的 Co3O4 基 LOB 仍表现出 250 次循环的高循环稳定性。这项工作阐明了催化剂表面酸度调节在促进锂二氧化物分解、从而降低 LOB 的电荷过电位方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Optimized molecular interactions significantly enhance capacitive energy storage in polymer blends at 150 °C A High Power Flexible Zn-Air Battery via Concurrent PAA Modulation and Structural Tuning Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries “Preferential Adsorption-Decomposition and Strong Binding” Strategy-Derived Interphase Enabling Fast-Charging and Wide-Temperature Sodium Metal Batteries Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1