Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-11-21 DOI:10.1016/j.electacta.2024.145394
Tian-Qi Xiang, Zhi- Yu Hu, Hong Huo, Jian-Jun Zhou, Lin Li
{"title":"Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode","authors":"Tian-Qi Xiang, Zhi- Yu Hu, Hong Huo, Jian-Jun Zhou, Lin Li","doi":"10.1016/j.electacta.2024.145394","DOIUrl":null,"url":null,"abstract":"Protection of lithium (Li) metal anodes is essential for the high performance of lithium metal batteries. Although the SnO<sub>2</sub> coating layer on the composite separator can provide protection for the Li metal anode, the effect diminishes over time as Li is plated on the coating surface, which can be attributed to the increased electronic conductivity of the reduced SnO<sub>2</sub> artificial solid electrolyte interfacial layer. Here, poly(vinylidene fluoride) (PVDF) is blended with SnO<sub>2</sub> to form an insulated SnO<sub>2</sub>/PVDF hybrid coating layer. The SnO<sub>2</sub>/PVDF hybrid coating layer significantly mitigates initial capacity loss and enhances the Coulombic efficiency of Cu||Li batteries. Adjustments to electronic conductivity of coating layer result in the deposition of large grain size Li beneath the hybrid coating layer. The SnO<sub>2</sub>/PVDF (=7/3) (S<sub>7</sub>P<sub>3</sub>) layer can stabilize the freshly deposited Li and improve the cycling performance of the Cu@Li/S<sub>7</sub>P<sub>3</sub> electrode. The S<sub>7</sub>P<sub>3</sub>@PE composite separator can significantly increase the cycle performance of LiFePO<sub>4</sub> (LFP)||Li batteries under low-temperature conditions. Furthermore, the S<sub>7</sub>P<sub>3</sub> layer can provide substantial advantages to LFP batteries with limited Li capacity, as well as to lithium-free anodes. Our approach to regulating Li deposition behavior by tailoring the electronic conductivity of the coating layer facilitates the long-term stability of the Li metal anode.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"18 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145394","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Protection of lithium (Li) metal anodes is essential for the high performance of lithium metal batteries. Although the SnO2 coating layer on the composite separator can provide protection for the Li metal anode, the effect diminishes over time as Li is plated on the coating surface, which can be attributed to the increased electronic conductivity of the reduced SnO2 artificial solid electrolyte interfacial layer. Here, poly(vinylidene fluoride) (PVDF) is blended with SnO2 to form an insulated SnO2/PVDF hybrid coating layer. The SnO2/PVDF hybrid coating layer significantly mitigates initial capacity loss and enhances the Coulombic efficiency of Cu||Li batteries. Adjustments to electronic conductivity of coating layer result in the deposition of large grain size Li beneath the hybrid coating layer. The SnO2/PVDF (=7/3) (S7P3) layer can stabilize the freshly deposited Li and improve the cycling performance of the Cu@Li/S7P3 electrode. The S7P3@PE composite separator can significantly increase the cycle performance of LiFePO4 (LFP)||Li batteries under low-temperature conditions. Furthermore, the S7P3 layer can provide substantial advantages to LFP batteries with limited Li capacity, as well as to lithium-free anodes. Our approach to regulating Li deposition behavior by tailoring the electronic conductivity of the coating layer facilitates the long-term stability of the Li metal anode.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整锂金属阳极复合分离器涂层的电子导电性
保护锂(Li)金属阳极对锂金属电池的高性能至关重要。虽然复合隔膜上的二氧化锡涂层可以为锂金属阳极提供保护,但随着时间的推移,涂层表面镀上锂的效果会逐渐减弱,这可能是由于还原的二氧化锡人工固态电解质界面层的电子导电性增加所致。在这里,聚偏二氟乙烯(PVDF)与二氧化锡混合形成了绝缘的二氧化锡/PVDF 混合镀膜层。SnO2/PVDF混合镀膜层可显著减少初始容量损失,并提高铜||锂电池的库仑效率。调整镀膜层的电子导电性可在混合镀膜层下沉积大晶粒锂。SnO2/PVDF(=7/3)(S7P3)层可以稳定新沉积的锂,提高 Cu@Li/S7P3 电极的循环性能。S7P3@PE 复合隔膜可显著提高磷酸铁锂(LFP)||锂电池在低温条件下的循环性能。此外,S7P3 层还能为锂容量有限的 LFP 电池以及无锂阳极提供实质性优势。我们通过调整镀膜层的电子导电性来调节锂沉积行为的方法有利于锂金属阳极的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
One-pot Synthesis of Heteroatom-rich Anthraquinone-based Benzoxazine-linked Porous organic polymers for high performance supercapacitors Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode Study on the treatment of carbon black for slurry electrodes of all-iron redox flow batteries Unveiling Manganese Malate as an Electrode Material for Supercapacitors Electrochemical Synthesis and Carbon Doping of Nanostructured Iron Fluorides from the Selection of Metal Current Collectors in Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1