Novel Single Perovskite Material for Visible-Light Photocatalytic CO2 Reduction via Joint Experimental and DFT Study

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-20 DOI:10.1002/smll.202407206
Ulkar Samadova, Amil Aligayev, Pir Muhammad Ismail, Min Liu, Ulviya Safarzade, Arif Hashimov, Ilhame Zakiyeva, Syeda Sughra Rabbani, Habib Khan, Qing Huang, Xiaoqiang Wu, Li Zhong, Fazal Raziq, Jiabao Yi, Pengfei Xia, Liang Qiao
{"title":"Novel Single Perovskite Material for Visible-Light Photocatalytic CO2 Reduction via Joint Experimental and DFT Study","authors":"Ulkar Samadova, Amil Aligayev, Pir Muhammad Ismail, Min Liu, Ulviya Safarzade, Arif Hashimov, Ilhame Zakiyeva, Syeda Sughra Rabbani, Habib Khan, Qing Huang, Xiaoqiang Wu, Li Zhong, Fazal Raziq, Jiabao Yi, Pengfei Xia, Liang Qiao","doi":"10.1002/smll.202407206","DOIUrl":null,"url":null,"abstract":"Developing advanced and economically viable technologies for the capture and utilization of carbon dioxide (CO<sub>2</sub>) is crucial for sustainable energy production from fossil fuels. Converting CO<sub>2</sub> into valuable chemicals and fuels is a promising approach to mitigate atmospheric CO<sub>2</sub> levels. Among various methods, photocatalytic reduction stands out for its potential to reduce emissions and produce useful products. Here, novel perovskite ZnMoFeO<sub>3</sub> (ZMFO) nanosheets are presented as promising semiconductor photocatalysts for CO<sub>2</sub> reduction. Experimental results show that ZMFO has a narrow bandgap, exceptional visible light response, large specific surface area, high crystallinity, and various surface-active sites, leading to an impressive photocatalytic CO<sub>2</sub> reduction activity of 24.87 µmolg<sup>−1</sup>h<sup>−1</sup> and strong stability. Theoretical calculations reveal that CO<sub>2</sub> conversion into CO and CH<sub>4</sub> on the ZMFO surface follows formaldehyde and carbine pathways. This study provides significant insights into designing innovative perovskite oxide-based photocatalysts for economical and efficient CO<sub>2</sub> reduction systems.","PeriodicalId":228,"journal":{"name":"Small","volume":"57 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407206","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing advanced and economically viable technologies for the capture and utilization of carbon dioxide (CO2) is crucial for sustainable energy production from fossil fuels. Converting CO2 into valuable chemicals and fuels is a promising approach to mitigate atmospheric CO2 levels. Among various methods, photocatalytic reduction stands out for its potential to reduce emissions and produce useful products. Here, novel perovskite ZnMoFeO3 (ZMFO) nanosheets are presented as promising semiconductor photocatalysts for CO2 reduction. Experimental results show that ZMFO has a narrow bandgap, exceptional visible light response, large specific surface area, high crystallinity, and various surface-active sites, leading to an impressive photocatalytic CO2 reduction activity of 24.87 µmolg−1h−1 and strong stability. Theoretical calculations reveal that CO2 conversion into CO and CH4 on the ZMFO surface follows formaldehyde and carbine pathways. This study provides significant insights into designing innovative perovskite oxide-based photocatalysts for economical and efficient CO2 reduction systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过实验和 DFT 联合研究发现用于可见光光催化二氧化碳还原的新型单一过氧化物材料
开发先进的、经济上可行的二氧化碳(CO2)捕集与利用技术,对于利用化石燃料进行可持续能源生产至关重要。将二氧化碳转化为有价值的化学品和燃料,是减缓大气中二氧化碳含量的一种可行方法。在各种方法中,光催化还原因其减少排放和生产有用产品的潜力而脱颖而出。这里介绍的新型过氧化物 ZnMoFeO3(ZMFO)纳米片是一种很有前景的用于还原二氧化碳的半导体光催化剂。实验结果表明,ZMFO 具有窄带隙、优异的可见光响应、大比表面积、高结晶度和多种表面活性位点,因而具有 24.87 µmolg-1h-1 的令人印象深刻的光催化二氧化碳还原活性和很强的稳定性。理论计算显示,二氧化碳在 ZMFO 表面转化为 CO 和 CH4 的过程遵循甲醛和碳化途径。这项研究为设计基于包晶氧化物的创新型光催化剂以实现经济高效的二氧化碳还原系统提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1