Kenyi Saito-Diaz, Paula Dietrich, Tripti Saini, Md Mamunur Rashid, Hsueh-Fu Wu, Mohamed Ishan, Xin Sun, Sydney Bedillion, Archie Jayesh Patel, Anthony Robert Prudden, Camryn Gale Wzientek, Trinity Nora Knight, Ya-Wen Chen, Geert-Jan Boons, Shuibing Chen, Lorenz Studer, Michael Tiemeyer, Bingqian Xu, Ioannis Dragatsis, Hong-Xiang Liu, Nadja Zeltner
{"title":"Genipin rescues developmental and degenerative defects in familial dysautonomia models and accelerates axon regeneration","authors":"Kenyi Saito-Diaz, Paula Dietrich, Tripti Saini, Md Mamunur Rashid, Hsueh-Fu Wu, Mohamed Ishan, Xin Sun, Sydney Bedillion, Archie Jayesh Patel, Anthony Robert Prudden, Camryn Gale Wzientek, Trinity Nora Knight, Ya-Wen Chen, Geert-Jan Boons, Shuibing Chen, Lorenz Studer, Michael Tiemeyer, Bingqian Xu, Ioannis Dragatsis, Hong-Xiang Liu, Nadja Zeltner","doi":"10.1126/scitranslmed.adq2418","DOIUrl":null,"url":null,"abstract":"The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the world’s population suffers from nerve degeneration or peripheral nerve damage. Despite this, there are major gaps in the knowledge of human PNS development and degeneration; therefore, there are no available treatments. Familial dysautonomia (FD) is a devastating disorder caused by a homozygous point mutation in the gene <jats:italic>ELP1</jats:italic> . FD specifically affects the development and causes degeneration of the PNS. We previously used patient-derived induced pluripotent stem cells (iPSCs) to show that peripheral sensory neurons (SNs) recapitulate the developmental and neurodegenerative defects observed in FD. Here, we conducted a chemical screen to identify compounds that rescue the SN differentiation inefficiency in FD. We identified that genipin restores neural crest and SN development in patient-derived iPSCs and in two mouse models of FD. Additionally, genipin prevented FD degeneration in SNs derived from patients with FD, suggesting that it could be used to ameliorate neurodegeneration. Moreover, genipin cross-linked the extracellular matrix (ECM), increased the stiffness of the ECM, reorganized the actin cytoskeleton, and promoted transcription of yes-associated protein–dependent genes. Last, genipin enhanced axon regeneration in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system) in in vitro axotomy models. Our results suggest that genipin has the potential to treat FD-related neurodevelopmental and neurodegenerative phenotypes and to enhance neuronal regeneration of healthy neurons after injury. Moreover, this suggests that the ECM can be targeted to treat FD.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"253 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adq2418","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the world’s population suffers from nerve degeneration or peripheral nerve damage. Despite this, there are major gaps in the knowledge of human PNS development and degeneration; therefore, there are no available treatments. Familial dysautonomia (FD) is a devastating disorder caused by a homozygous point mutation in the gene ELP1 . FD specifically affects the development and causes degeneration of the PNS. We previously used patient-derived induced pluripotent stem cells (iPSCs) to show that peripheral sensory neurons (SNs) recapitulate the developmental and neurodegenerative defects observed in FD. Here, we conducted a chemical screen to identify compounds that rescue the SN differentiation inefficiency in FD. We identified that genipin restores neural crest and SN development in patient-derived iPSCs and in two mouse models of FD. Additionally, genipin prevented FD degeneration in SNs derived from patients with FD, suggesting that it could be used to ameliorate neurodegeneration. Moreover, genipin cross-linked the extracellular matrix (ECM), increased the stiffness of the ECM, reorganized the actin cytoskeleton, and promoted transcription of yes-associated protein–dependent genes. Last, genipin enhanced axon regeneration in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system) in in vitro axotomy models. Our results suggest that genipin has the potential to treat FD-related neurodevelopmental and neurodegenerative phenotypes and to enhance neuronal regeneration of healthy neurons after injury. Moreover, this suggests that the ECM can be targeted to treat FD.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.