Coastal Supra-Permafrost Aquifers of the Arctic and Their Significant Groundwater, Carbon, and Nitrogen Fluxes

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-21 DOI:10.1029/2024gl109142
Cansu Demir, James W. McClelland, Emily Bristol, Matthew A. Charette, M. Bayani Cardenas
{"title":"Coastal Supra-Permafrost Aquifers of the Arctic and Their Significant Groundwater, Carbon, and Nitrogen Fluxes","authors":"Cansu Demir, James W. McClelland, Emily Bristol, Matthew A. Charette, M. Bayani Cardenas","doi":"10.1029/2024gl109142","DOIUrl":null,"url":null,"abstract":"Fresh submarine groundwater discharge (FSGD) can deliver significant fluxes of water and solutes from land to sea. In the Arctic, which accounts for ∼34% of coastlines globally, direct observations and knowledge of FSGD are scarce. Through integration of observations and process-based models, we found that regardless of ice-bonded permafrost depth at the shore, summer SGD flow dynamics along portions of the Beaufort Sea coast of Alaska are similar to those in lower latitudes. Calculated summer FSGD fluxes in the Arctic are generally higher relative to low latitudes. The FSGD organic carbon and nitrogen fluxes are likely larger than summer riverine input. The FSGD also has very high CO<sub>2</sub> making it a potentially significant source of inorganic carbon. Thus, the biogeochemistry of Arctic coastal waters is potentially influenced by groundwater inputs during summer. These water and solute fluxes will likely increase as coastal permafrost across the Arctic thaws.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"108 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl109142","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fresh submarine groundwater discharge (FSGD) can deliver significant fluxes of water and solutes from land to sea. In the Arctic, which accounts for ∼34% of coastlines globally, direct observations and knowledge of FSGD are scarce. Through integration of observations and process-based models, we found that regardless of ice-bonded permafrost depth at the shore, summer SGD flow dynamics along portions of the Beaufort Sea coast of Alaska are similar to those in lower latitudes. Calculated summer FSGD fluxes in the Arctic are generally higher relative to low latitudes. The FSGD organic carbon and nitrogen fluxes are likely larger than summer riverine input. The FSGD also has very high CO2 making it a potentially significant source of inorganic carbon. Thus, the biogeochemistry of Arctic coastal waters is potentially influenced by groundwater inputs during summer. These water and solute fluxes will likely increase as coastal permafrost across the Arctic thaws.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极沿海超冻土含水层及其重要的地下水、碳和氮通量
新鲜的海底地下水排放(FSGD)可以将大量的水和溶质从陆地输送到海洋。在占全球海岸线 34% 的北极地区,对淡水海底地下水排放的直接观测和了解非常稀少。通过整合观测数据和基于过程的模型,我们发现,无论海岸上冰结合的永久冻土深度如何,阿拉斯加波弗特海沿岸部分地区的夏季 SGD 流量动态与低纬度地区相似。与低纬度地区相比,北极地区夏季 FSGD 流量的计算值普遍较高。FSGD 的有机碳和氮通量可能大于夏季河流输入量。FSGD 的二氧化碳含量也很高,因此有可能成为无机碳的重要来源。因此,北极沿岸水域的生物地球化学可能受到夏季地下水输入的影响。随着北极沿岸永久冻土的解冻,这些水和溶质通量可能会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments With Global AI-Based Weather Models Light Limitation of Poleward Coral Reef Expansion During Past Warm Climates A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections From Three Regional Climate Models Under a Strong Warming Scenario (SSP5-8.5) Coastal Supra-Permafrost Aquifers of the Arctic and Their Significant Groundwater, Carbon, and Nitrogen Fluxes Enablement or Suppression of Collisionless Magnetic Reconnection by the Background Plasma Beta and Guide Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1