{"title":"A green and sustainable technology for the development of artificial protein fibers from sorghum distillers grains for industrialization","authors":"Yuanyi Shao, Bingnan Mu, Lan Xu, Yiqi Yang","doi":"10.1016/j.cej.2024.157853","DOIUrl":null,"url":null,"abstract":"For the first time, artificial fibers from proteins, mainly kafirin and glutelin, from sorghum distillers grains (SDG) have been developed. SDG is difficult to digest due to dense cystine crosslinkages, therefore, is a poor animal feed with much lower value than corn distillers grains. However, dense cystine crosslinkages are an advantage for fiber properties, such as mechanical properties and wet stability. Also, fibers are much more expensive than feed, hence, can add higher values to sorghum industry. Previously, only kafirin was extracted from SDG using traditional solvents for plant proteins, such as alcohol/water, acetic acid, and formic acid. However, these solvents provided kafirin with poor or no spinnability. Glutelin, another major protein in SDG, about 35% of total, had not been used for industrial applications. We developed a green and sustainable water-based system that dissolved sorghum proteins including both kafirin and glutelin and achieved desirable fiber spinnability. We also developed the green aqueous coagulation and oxidation systems to effectively solidify protein fibers after wet spinning from our aqueous spinning solution and recovered cystine crosslinkages between sorghum protein molecules. The artificial sorghum protein fibers from our total aqueous and green spinning system have mechanical properties better than soy protein fibers and regenerated feather keratin fibers. We also used the sustainable sucrose-derived aldehydes to chemically crosslink sorghum proteins. With only 2% of the crosslinker based on weight of fibers, our artificial sorghum protein fibers have mechanical properties better than that of wool.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"74 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157853","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For the first time, artificial fibers from proteins, mainly kafirin and glutelin, from sorghum distillers grains (SDG) have been developed. SDG is difficult to digest due to dense cystine crosslinkages, therefore, is a poor animal feed with much lower value than corn distillers grains. However, dense cystine crosslinkages are an advantage for fiber properties, such as mechanical properties and wet stability. Also, fibers are much more expensive than feed, hence, can add higher values to sorghum industry. Previously, only kafirin was extracted from SDG using traditional solvents for plant proteins, such as alcohol/water, acetic acid, and formic acid. However, these solvents provided kafirin with poor or no spinnability. Glutelin, another major protein in SDG, about 35% of total, had not been used for industrial applications. We developed a green and sustainable water-based system that dissolved sorghum proteins including both kafirin and glutelin and achieved desirable fiber spinnability. We also developed the green aqueous coagulation and oxidation systems to effectively solidify protein fibers after wet spinning from our aqueous spinning solution and recovered cystine crosslinkages between sorghum protein molecules. The artificial sorghum protein fibers from our total aqueous and green spinning system have mechanical properties better than soy protein fibers and regenerated feather keratin fibers. We also used the sustainable sucrose-derived aldehydes to chemically crosslink sorghum proteins. With only 2% of the crosslinker based on weight of fibers, our artificial sorghum protein fibers have mechanical properties better than that of wool.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.