Mohamed Hamdy, Mohammed El-Adawy, Ahmed Abdelhalim, Ahmed Abdelhafez, Medhat A. Nemitallah
{"title":"On the effects of oxygen fraction on stability and combustion characteristics of dual-swirl oxy-methane flames: An experimental and numerical study","authors":"Mohamed Hamdy, Mohammed El-Adawy, Ahmed Abdelhalim, Ahmed Abdelhafez, Medhat A. Nemitallah","doi":"10.1016/j.csite.2024.105519","DOIUrl":null,"url":null,"abstract":"The effects of oxygen fractions of primary and secondary streams on flow/flame interactions, flame stability and macrostructure, and combustion and emissions characteristics of premixed oxy-methane (CH4/CO2/O2) flames were studied experimentally and numerically in a dual annular counter-rotating swirl (DACRS) burner for applications of clean power production in gas turbines. The primary stream oxygen fractions (OF<ce:inf loc=\"post\">p</ce:inf>) of 34 % and 25 % were paired with secondary stream oxygen fractions (OF<ce:inf loc=\"post\">s</ce:inf>) ranging from 25 % to 39 % at fixed primary stream equivalence ratio (φ<ce:inf loc=\"post\">p</ce:inf> = 0.9), fixed velocity ratio of 3.0 by the primary (of 5 m/s) and secondary (of 1.667 m/s) streams, and over ranges of secondary stream equivalence ratios (φ<ce:inf loc=\"post\">s</ce:inf>). The results showed that at OF<ce:inf loc=\"post\">p</ce:inf> = 34 % and OF<ce:inf loc=\"post\">S</ce:inf> = 39 %, the pilot flame supports a lean secondary flame down to φ<ce:inf loc=\"post\">s</ce:inf> = 0.434 at combustor global equivalence ratio (φ<ce:inf loc=\"post\">g</ce:inf>) of 0.467. Flame flashback concerns were not seen in the operative OF<ce:inf loc=\"post\">s</ce:inf> zone until the secondary stream reached stoichiometric operation (<ce:italic>φ</ce:italic><ce:inf loc=\"post\">s</ce:inf> = 1.0). The widths and forms of the inner and outer recirculation zones (IRZ and ORZ) are not significantly affected by changes in OF. Reducing φ<ce:inf loc=\"post\">g</ce:inf> and OF<ce:inf loc=\"post\">g</ce:inf> resulted in decreases in Damköhler number (Da), laminar flame speed, and CO emissions.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"15 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of oxygen fractions of primary and secondary streams on flow/flame interactions, flame stability and macrostructure, and combustion and emissions characteristics of premixed oxy-methane (CH4/CO2/O2) flames were studied experimentally and numerically in a dual annular counter-rotating swirl (DACRS) burner for applications of clean power production in gas turbines. The primary stream oxygen fractions (OFp) of 34 % and 25 % were paired with secondary stream oxygen fractions (OFs) ranging from 25 % to 39 % at fixed primary stream equivalence ratio (φp = 0.9), fixed velocity ratio of 3.0 by the primary (of 5 m/s) and secondary (of 1.667 m/s) streams, and over ranges of secondary stream equivalence ratios (φs). The results showed that at OFp = 34 % and OFS = 39 %, the pilot flame supports a lean secondary flame down to φs = 0.434 at combustor global equivalence ratio (φg) of 0.467. Flame flashback concerns were not seen in the operative OFs zone until the secondary stream reached stoichiometric operation (φs = 1.0). The widths and forms of the inner and outer recirculation zones (IRZ and ORZ) are not significantly affected by changes in OF. Reducing φg and OFg resulted in decreases in Damköhler number (Da), laminar flame speed, and CO emissions.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.