Enhancing Water Deficit Stress Tolerance in Wheat: Synergistic Effects of Silicon Nanoparticles and Plant Growth-Promoting Bacteria

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2024-10-14 DOI:10.1007/s12633-024-03164-9
Faezeh Davoudi, Mahboobeh Jalali, Keyvan Valizadeh-Rad, Hassan Etesami
{"title":"Enhancing Water Deficit Stress Tolerance in Wheat: Synergistic Effects of Silicon Nanoparticles and Plant Growth-Promoting Bacteria","authors":"Faezeh Davoudi,&nbsp;Mahboobeh Jalali,&nbsp;Keyvan Valizadeh-Rad,&nbsp;Hassan Etesami","doi":"10.1007/s12633-024-03164-9","DOIUrl":null,"url":null,"abstract":"<div><p>Water deficit stress significantly reduces grain yield in bread wheat, requiring improved tolerance in cultivars. Despite recent breeding advancements, enhancing tolerance remains crucial. Plant growth-promoting bacteria (PGPB) and silicon (Si) independently boost drought resistance through different mechanisms, but their combined effects are understudied. This research explored the combined impacts of silicon dioxide nanoparticles (SiO<sub>2</sub> NPs) and native PGPB on wheat's morphophysiological and nutritional responses under water deficit stress. The study tested various SiO<sub>2</sub> NPs concentrations (control, soil application of 100 and 200 mgkg<sup>−1</sup>, and foliar application of 200 mgkg<sup>−1</sup>) and PGPB strains (no bacterium, <i>Pseudomonas fluorescens</i> p-187, and <i>Pseudomonas putida</i> p-168). Results showed that SiO<sub>2</sub> NPs significantly improved wheat tolerance to water stress, increasing shoot dry weight by 4.40 g/pot with 100 mgkg<sup>−1</sup> SiO<sub>2</sub>NPs and <i>Pseudomonas fluorescens</i> p-187 compared to the control, and root dry weight by 1.05 g pot<sup>−1</sup> with foliar application of 200 mgkg<sup>−1</sup> SiO<sub>2</sub> NPs and <i>Pseudomonas putida</i> p-168. SiO<sub>2</sub> NPs and PGPB also boosted N, P, K, and Si concentrations in wheat shoots, reduced malondialdehyde content, and increased superoxide dismutase and glutathione peroxidase activities. The best performance was achieved with 200 mgkg<sup>−1</sup> SiO<sub>2</sub> NPs and <i>Pseudomonas fluorescens</i> p-187. The study confirms that combining SiO<sub>2</sub> NPs sources with PGPB effectively enhances wheat's drought tolerance. This synergistic approach offers an environmentally sustainable strategy to bolster crop resilience against water deficit stress, ensuring better wheat yield in drought-prone conditions.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 18","pages":"6525 - 6540"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03164-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water deficit stress significantly reduces grain yield in bread wheat, requiring improved tolerance in cultivars. Despite recent breeding advancements, enhancing tolerance remains crucial. Plant growth-promoting bacteria (PGPB) and silicon (Si) independently boost drought resistance through different mechanisms, but their combined effects are understudied. This research explored the combined impacts of silicon dioxide nanoparticles (SiO2 NPs) and native PGPB on wheat's morphophysiological and nutritional responses under water deficit stress. The study tested various SiO2 NPs concentrations (control, soil application of 100 and 200 mgkg−1, and foliar application of 200 mgkg−1) and PGPB strains (no bacterium, Pseudomonas fluorescens p-187, and Pseudomonas putida p-168). Results showed that SiO2 NPs significantly improved wheat tolerance to water stress, increasing shoot dry weight by 4.40 g/pot with 100 mgkg−1 SiO2NPs and Pseudomonas fluorescens p-187 compared to the control, and root dry weight by 1.05 g pot−1 with foliar application of 200 mgkg−1 SiO2 NPs and Pseudomonas putida p-168. SiO2 NPs and PGPB also boosted N, P, K, and Si concentrations in wheat shoots, reduced malondialdehyde content, and increased superoxide dismutase and glutathione peroxidase activities. The best performance was achieved with 200 mgkg−1 SiO2 NPs and Pseudomonas fluorescens p-187. The study confirms that combining SiO2 NPs sources with PGPB effectively enhances wheat's drought tolerance. This synergistic approach offers an environmentally sustainable strategy to bolster crop resilience against water deficit stress, ensuring better wheat yield in drought-prone conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强小麦对缺水胁迫的耐受性:纳米硅颗粒与植物生长促进细菌的协同效应
缺水胁迫会大大降低面包小麦的谷物产量,因此需要提高栽培品种的耐受性。尽管最近育种取得了进展,但提高耐受性仍然至关重要。植物生长促进菌(PGPB)和硅(Si)通过不同的机制独立地提高了抗旱性,但它们的综合效应还未得到充分研究。本研究探讨了二氧化硅纳米颗粒(SiO2 NPs)和本地 PGPB 在缺水胁迫下对小麦形态生理和营养响应的综合影响。该研究测试了不同浓度的 SiO2 NPs(对照、100 和 200 mgkg-1 的土壤施用以及 200 mgkg-1 的叶面施用)和 PGPB 菌株(无菌、荧光假单胞菌 p-187 和假单胞菌 p-168)。结果表明,SiO2 NPs 能显著提高小麦对水分胁迫的耐受性,与对照相比,叶面喷施 100 mgkg-1 SiO2NPs 和荧光假单胞菌 p-187 可使芽干重增加 4.40 克/盆,叶面喷施 200 mgkg-1 SiO2NPs 和腐生假单胞菌 p-168 可使根干重增加 1.05 克/盆。SiO2 NPs 和 PGPB 还能提高小麦芽中氮、磷、钾和硅的浓度,降低丙二醛含量,提高超氧化物歧化酶和谷胱甘肽过氧化物酶的活性。200 mgkg-1 二氧化硅氮氧化物和荧光假单胞菌 p-187 的效果最佳。该研究证实,将 SiO2 NPs 源与 PGPB 结合使用可有效提高小麦的抗旱性。这种协同增效方法提供了一种环境可持续战略,可增强作物对缺水胁迫的抗逆性,确保小麦在易旱条件下获得更高的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Physical Properties and Mechanical Behavior of WSi2 at High Pressure Fabrication of SiC-Al2O3 Nanoceramic Doped Organic Polymer For Flexible Nanoelectronics and Optical Applications SiNPs Decoration of Silicon Solar Cells and Size Analysis on the Downshifting Mechanism Response for the Enhancement of Solar Cells Efficiency Nano Silica Catalyzed Synthesis, NMR Spectral and Photophysical Studies of Imidazole Derivatives Recent Progress in Silicon Quantum Dots Sensors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1