The September 21, 2020 (Mw = 5.6) Bystraya Earthquake at the South-Western Flank of the Baikal Rift Zone: a Milestone in Macroseismology of Eastern Siberia

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Izvestiya, Physics of the Solid Earth Pub Date : 2024-11-22 DOI:10.1134/S1069351324700861
Ya. B. Radziminovich, A. V. Novopashina, O. F. Lukhneva, N. A. Gileva, E. A. Kuz’mina
{"title":"The September 21, 2020 (Mw = 5.6) Bystraya Earthquake at the South-Western Flank of the Baikal Rift Zone: a Milestone in Macroseismology of Eastern Siberia","authors":"Ya. B. Radziminovich,&nbsp;A. V. Novopashina,&nbsp;O. F. Lukhneva,&nbsp;N. A. Gileva,&nbsp;E. A. Kuz’mina","doi":"10.1134/S1069351324700861","DOIUrl":null,"url":null,"abstract":"<p>The article presents analysis of macroseismic data on the September 21, 2020 (<i>M</i><sub>w</sub> = 5.6) Bystraya earthquake, which occurred in the eastern part of the Tunka basins system on the southwestern flank of the Baikal rift zone. Macroseismic data were collected mainly through an Internet questionnaire posted on the website of the Baikal Branch of the Geophysical Survey, Russian Academy Sciences. A total of 3013 eyewitness responses were collected, which is currently an unprecedented number in the entire history of macroseismic observations in the Baikal region. In total, we collected data for 263 Intensity Data Points. The maximal shaking intensity (VI–VII MSK-64) was observed in the Bystraya village and the Kultuk settlement. The shaking intensity V MSK-64 was noted at a distance of up to ~180 km; intensity IV MSK-64 was recorded at a distance of up to ~550 km. Analysis of data on the Bystraya earthquake revealed significantly lower attenuation compared to that expected from the regional macroseismic equation. Due to the large volume of macroseismic data collected, as well as the high efficiency of the data collection method used, the Bystraya earthquake can be considered an important milestone in macroseismic research in East Siberia.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 5","pages":"944 - 959"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700861","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents analysis of macroseismic data on the September 21, 2020 (Mw = 5.6) Bystraya earthquake, which occurred in the eastern part of the Tunka basins system on the southwestern flank of the Baikal rift zone. Macroseismic data were collected mainly through an Internet questionnaire posted on the website of the Baikal Branch of the Geophysical Survey, Russian Academy Sciences. A total of 3013 eyewitness responses were collected, which is currently an unprecedented number in the entire history of macroseismic observations in the Baikal region. In total, we collected data for 263 Intensity Data Points. The maximal shaking intensity (VI–VII MSK-64) was observed in the Bystraya village and the Kultuk settlement. The shaking intensity V MSK-64 was noted at a distance of up to ~180 km; intensity IV MSK-64 was recorded at a distance of up to ~550 km. Analysis of data on the Bystraya earthquake revealed significantly lower attenuation compared to that expected from the regional macroseismic equation. Due to the large volume of macroseismic data collected, as well as the high efficiency of the data collection method used, the Bystraya earthquake can be considered an important milestone in macroseismic research in East Siberia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝加尔裂谷带西南侧 2020 年 9 月 21 日(Mw = 5.6)Bystraya 地震:东西伯利亚宏观地震学的里程碑
文章介绍了对 2020 年 9 月 21 日(Mw = 5.6)Bystraya 地震宏观地震数据的分析,该地震发生在贝加尔断裂带西南侧通卡盆地系统的东部。宏观地震数据主要是通过俄罗斯科学院地球物理勘测贝加尔分院网站上发布的网络问卷收集的。共收集到 3013 份目击者答复,这在贝加尔湖地区宏观地震观测的整个历史上都是前所未有的。我们总共收集了 263 个强度数据点的数据。在 Bystraya 村和 Kultuk 聚居区观测到了最大摇晃强度(VI-VII MSK-64)。距离约 180 千米的地方出现了 V 级 MSK-64 地震烈度;距离约 550 千米的地方出现了 IV 级 MSK-64 地震烈度。对 Bystraya 地震数据的分析表明,与区域宏观地震方程预期的衰减相比,衰减明显较低。由于收集到了大量的宏观地震数据,以及所使用的数据收集方法的高效性,Bystraya 地震可被视为东西伯利亚宏观地震研究的一个重要里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
The Limits of Applicability of the Gutenberg–Richter Law in the Problems of Seismic Hazard and Risk Assessment Parameters of the Seismic Regime of the Eastern Sector of the Arctic Zone of the Russian Federation On the Use of Medium-Term Forecast Data for the Baikal Rift Zone in Seismic-Hazard Assessments Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting Features of Seismicity Anomalies before Strong Earthquakes in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1