Ebthag M. Awad, Nagwa A. Abdallah, Mona M. K. Shehata, Hala A. Farrag
{"title":"Detection and molecular insights into the azurin gene expression post– gamma irradiation in P. aeruginosa","authors":"Ebthag M. Awad, Nagwa A. Abdallah, Mona M. K. Shehata, Hala A. Farrag","doi":"10.1007/s00203-024-04195-x","DOIUrl":null,"url":null,"abstract":"<div><p>Azurin, a secondary metabolite from <i>Pseudomonas aeruginosa</i>, has attracted much attention owing to its valuable therapeutic and biological applications. This work aimed to study and chartly maximize the azurin production process using different doses of gamma irradiation (5–400 Gy) in <i>P. aeruginosa</i> isolates. Seventy-six <i>P. aeruginosa</i> isolates were sourced from 135 environmental samples and 35 clinical bacterial isolates with the following descending order: 35 isolates (46%) from clinical samples, 26 isolates (34%) from water samples, and 15 isolates (20%) from soil samples. The disc diffusion technique was used for antimicrobial susceptibility testing, revealing that the multidrug-resistant (MDR) rate among all collected isolates according to the criteria determined by Clinical and Laboratory Standards Institute (CLSI) was 54 (71%). The genomic experimental results revealed that only 37 MDR isolates tested positive for the azurin gene, as detected by the PCR product at 446 bp. These findings were further supported by FTIR analysis, which revealed peaks around 1636.96 cm<sup>− 1</sup>, indicating a prominent α-helix secondary structure of azurin in these isolates. Related to their pathogenicity and antibiotic resistance, isolates from clinical origin exhibited the higher azurin gene expression level. Besides, this study confirmed the potency of gamma radiation exposure at 50 and 100 Gy significantly increased the azurin expression levels in three tested clinical isolates (<i>P</i> ≤ 0.05), with a maximum fold expression level of 63.55 compared to the non-irradiated samples. In conclusion, low doses of gamma irradiation effectively enhanced expression level of a secondary metabolite azurin, providing a considerable benefit for subsequent purification processes in both biological and medical applications.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04195-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Azurin, a secondary metabolite from Pseudomonas aeruginosa, has attracted much attention owing to its valuable therapeutic and biological applications. This work aimed to study and chartly maximize the azurin production process using different doses of gamma irradiation (5–400 Gy) in P. aeruginosa isolates. Seventy-six P. aeruginosa isolates were sourced from 135 environmental samples and 35 clinical bacterial isolates with the following descending order: 35 isolates (46%) from clinical samples, 26 isolates (34%) from water samples, and 15 isolates (20%) from soil samples. The disc diffusion technique was used for antimicrobial susceptibility testing, revealing that the multidrug-resistant (MDR) rate among all collected isolates according to the criteria determined by Clinical and Laboratory Standards Institute (CLSI) was 54 (71%). The genomic experimental results revealed that only 37 MDR isolates tested positive for the azurin gene, as detected by the PCR product at 446 bp. These findings were further supported by FTIR analysis, which revealed peaks around 1636.96 cm− 1, indicating a prominent α-helix secondary structure of azurin in these isolates. Related to their pathogenicity and antibiotic resistance, isolates from clinical origin exhibited the higher azurin gene expression level. Besides, this study confirmed the potency of gamma radiation exposure at 50 and 100 Gy significantly increased the azurin expression levels in three tested clinical isolates (P ≤ 0.05), with a maximum fold expression level of 63.55 compared to the non-irradiated samples. In conclusion, low doses of gamma irradiation effectively enhanced expression level of a secondary metabolite azurin, providing a considerable benefit for subsequent purification processes in both biological and medical applications.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.