Impact of T-Shape Drain Doping Engineering on the Analog/RF and High-Frequency Noise Parameters of Junctionless Si/ Si0.7Ge0.3 FET: A Numerical Simulation Study

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2024-10-11 DOI:10.1007/s12633-024-03155-w
Rayhaneh Ejlali, Mahdi Vadizadeh, Saeed Haji-Nasiri, Alireza Kashaniniya, Arash Dana
{"title":"Impact of T-Shape Drain Doping Engineering on the Analog/RF and High-Frequency Noise Parameters of Junctionless Si/ Si0.7Ge0.3 FET: A Numerical Simulation Study","authors":"Rayhaneh Ejlali,&nbsp;Mahdi Vadizadeh,&nbsp;Saeed Haji-Nasiri,&nbsp;Alireza Kashaniniya,&nbsp;Arash Dana","doi":"10.1007/s12633-024-03155-w","DOIUrl":null,"url":null,"abstract":"<div><p>Decreased carrier mobility in the junctionless field-effect transistors (JLFETs) channel limits their performance for applications in high-frequency electronics. This paper presents a drain doping technique based on CMOS technology is offered for the first time to improve the analog/RF performance and high-frequency noise parameters of a CONV-shell doped channel- JLFET (CONV-SDCHJLFET). The proposed device is called DG-JLFET with T-shape drain doping (DG-JLFET with TSDD), in which two main drain regions (regions d<sub>1</sub> and d<sub>2</sub>) are crucial to achieve the desired results. By fine-tuning various influencing factors within these two regions, the DG-JLFET with TSDD achieves a transconductance (g<sub>mmax</sub>) of 4.41 mS/um, a cut-off frequency (f<sub>T</sub>) of 813 GHz, a minimum noise figure (NF<sub>min</sub>) of 0.6 dB and an available associated gain (Gma) of 19.92 dB. g<sub>mmax</sub>, f<sub>T</sub>, NF<sub>min</sub>, and Gma of the SDCh-JLFET increased by 78%, 30%, 53%, and 19.2%, respectively, compared to the CONV-SDCHJLFET with similar dimensions. This device is excellent for analog/RF applications and performs well in high-frequency noise, making it an ideal choice for demanding next-generation telecommunications applications.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 18","pages":"6465 - 6478"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03155-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Decreased carrier mobility in the junctionless field-effect transistors (JLFETs) channel limits their performance for applications in high-frequency electronics. This paper presents a drain doping technique based on CMOS technology is offered for the first time to improve the analog/RF performance and high-frequency noise parameters of a CONV-shell doped channel- JLFET (CONV-SDCHJLFET). The proposed device is called DG-JLFET with T-shape drain doping (DG-JLFET with TSDD), in which two main drain regions (regions d1 and d2) are crucial to achieve the desired results. By fine-tuning various influencing factors within these two regions, the DG-JLFET with TSDD achieves a transconductance (gmmax) of 4.41 mS/um, a cut-off frequency (fT) of 813 GHz, a minimum noise figure (NFmin) of 0.6 dB and an available associated gain (Gma) of 19.92 dB. gmmax, fT, NFmin, and Gma of the SDCh-JLFET increased by 78%, 30%, 53%, and 19.2%, respectively, compared to the CONV-SDCHJLFET with similar dimensions. This device is excellent for analog/RF applications and performs well in high-frequency noise, making it an ideal choice for demanding next-generation telecommunications applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无结硅/硅0.7锗0.3场效应晶体管的T形漏极掺杂工程对模拟/射频和高频噪声参数的影响:数值模拟研究
无结场效应晶体管(JLFET)沟道中载流子迁移率的降低限制了其在高频电子产品中的应用性能。本文首次提出了一种基于 CMOS 技术的漏极掺杂技术,用于改善 CONV 壳掺杂沟道 JLFET(CONV-SDCHJLFET)的模拟/射频性能和高频噪声参数。所提出的器件被称为具有 T 型漏极掺杂的 DG-JLFET (DG-JLFET with TSDD),其中两个主要漏极区(d1 区和 d2 区)对实现预期效果至关重要。通过微调这两个区域内的各种影响因素,带 TSDD 的 DG-JLFET 实现了 4.41 mS/um 的跨导 (ggmax)、813 GHz 的截止频率 (fT)、0.与具有类似尺寸的 CONV-SDCHJLFET 相比,SDCh-JLFET 的 gmmax、fT、NFmin 和 Gma 分别提高了 78%、30%、53% 和 19.2%。该器件非常适合模拟/射频应用,在高频噪声方面表现出色,是要求苛刻的下一代电信应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Physical Properties and Mechanical Behavior of WSi2 at High Pressure Fabrication of SiC-Al2O3 Nanoceramic Doped Organic Polymer For Flexible Nanoelectronics and Optical Applications SiNPs Decoration of Silicon Solar Cells and Size Analysis on the Downshifting Mechanism Response for the Enhancement of Solar Cells Efficiency Nano Silica Catalyzed Synthesis, NMR Spectral and Photophysical Studies of Imidazole Derivatives Recent Progress in Silicon Quantum Dots Sensors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1