{"title":"Atlantic Meridional Overturning Circulation slowdown modulates wind-driven circulations in a warmer climate","authors":"Mohima Sultana Mimi, Wei Liu","doi":"10.1038/s43247-024-01907-5","DOIUrl":null,"url":null,"abstract":"Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations. Warmer climates weaken the Atlantic Meridional Overturning Circulation, causing anticyclonic surface wind anomalies in the subpolar North Atlantic, decelerating gyre circulation and affecting Atlantic western boundary currents, according to analysis of fully coupled climate model experiments under anthropogenic warming.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01907-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01907-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations. Warmer climates weaken the Atlantic Meridional Overturning Circulation, causing anticyclonic surface wind anomalies in the subpolar North Atlantic, decelerating gyre circulation and affecting Atlantic western boundary currents, according to analysis of fully coupled climate model experiments under anthropogenic warming.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.