Hypercrosslinked polymer membranes via interfacial polymerization for organic dye separations

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-11-20 DOI:10.1038/s43246-024-00668-0
Qingyin Li, Shuqing Li, Caimei Yu, Zhen Zhan, Guang Cheng, Bien Tan, Shijie Ren
{"title":"Hypercrosslinked polymer membranes via interfacial polymerization for organic dye separations","authors":"Qingyin Li, Shuqing Li, Caimei Yu, Zhen Zhan, Guang Cheng, Bien Tan, Shijie Ren","doi":"10.1038/s43246-024-00668-0","DOIUrl":null,"url":null,"abstract":"Hypercrosslinked polymers (HCPs) have gained attention as promising materials for separation membranes due to their abundant porosity, low cost, ease of preparation, and excellent stability. Here, we demonstrate an interfacial-assisted polymerization approach to prepare continuous HCP membranes at room temperature. The method demonstrates versatility in constructing HCP membranes using various precursors, including small molecules and polymers. Specifically, the HCP membranes prepared using benzene as the monomer exhibit controllable thickness and a remarkable Brunauer-Emmett-Teller surface area of up to 855 m2 g−1. Leveraging physical size sieving and electrostatic interaction, the fabricated benzene-based membranes effectively reject small anionic dye molecules, such as Congo Red, Acid Fuchsin, and Methyl Orange, achieving rejection rates exceeding 93% while maintaining a high-water flux of up to 55 L m−2 h−1 bar−1. This study shows a versatile approach for the design of HCP membranes capable of efficiently separating mixtures containing small molecules. Hypercrosslinked polymers are promising materials for separation membranes due to their low cost and high porosity. Here, continuous hypercrosslinked polymer membranes are prepared using interfacial polymerization that effectively rejects small dye molecules with high water flux.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00668-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00668-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypercrosslinked polymers (HCPs) have gained attention as promising materials for separation membranes due to their abundant porosity, low cost, ease of preparation, and excellent stability. Here, we demonstrate an interfacial-assisted polymerization approach to prepare continuous HCP membranes at room temperature. The method demonstrates versatility in constructing HCP membranes using various precursors, including small molecules and polymers. Specifically, the HCP membranes prepared using benzene as the monomer exhibit controllable thickness and a remarkable Brunauer-Emmett-Teller surface area of up to 855 m2 g−1. Leveraging physical size sieving and electrostatic interaction, the fabricated benzene-based membranes effectively reject small anionic dye molecules, such as Congo Red, Acid Fuchsin, and Methyl Orange, achieving rejection rates exceeding 93% while maintaining a high-water flux of up to 55 L m−2 h−1 bar−1. This study shows a versatile approach for the design of HCP membranes capable of efficiently separating mixtures containing small molecules. Hypercrosslinked polymers are promising materials for separation membranes due to their low cost and high porosity. Here, continuous hypercrosslinked polymer membranes are prepared using interfacial polymerization that effectively rejects small dye molecules with high water flux.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于有机染料分离的界面聚合超交联聚合物膜
超交联聚合物(HCP)因其丰富的孔隙率、低成本、易制备和出色的稳定性,作为一种有前途的分离膜材料而备受关注。在此,我们展示了一种在室温下制备连续 HCP 膜的界面辅助聚合方法。该方法展示了使用各种前体(包括小分子和聚合物)构建 HCP 膜的多功能性。具体来说,以苯为单体制备的 HCP 膜具有可控的厚度和高达 855 m2 g-1 的显著布鲁瑙尔-艾美特-泰勒表面积。利用物理尺寸筛分和静电作用,制备的苯基膜可有效阻隔刚果红、酸性品红和甲基橙等阴离子染料小分子,阻隔率超过 93%,同时保持高达 55 L m-2 h-1 bar-1 的高水流量。这项研究展示了一种设计 HCP 膜的多功能方法,这种膜能够有效分离含有小分子的混合物。超交联聚合物成本低、孔隙率高,是一种很有前景的分离膜材料。本文利用界面聚合法制备了连续超交联聚合物膜,它能以高水通量有效析出小分子染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Magnetic domain walls interacting with dislocations in micromagnetic simulations Hypercrosslinked polymer membranes via interfacial polymerization for organic dye separations Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1