A global overview of marine heatwaves in a changing climate

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-11-20 DOI:10.1038/s43247-024-01806-9
Antonietta Capotondi, Regina R. Rodrigues, Alex Sen Gupta, Jessica A. Benthuysen, Clara Deser, Thomas L. Frölicher, Nicole S. Lovenduski, Dillon J. Amaya, Natacha Le Grix, Tongtong Xu, Juliet Hermes, Neil J. Holbrook, Cristian Martinez-Villalobos, Simona Masina, Mathew Koll Roxy, Amandine Schaeffer, Robert W. Schlegel, Kathryn E. Smith, Chunzai Wang
{"title":"A global overview of marine heatwaves in a changing climate","authors":"Antonietta Capotondi, Regina R. Rodrigues, Alex Sen Gupta, Jessica A. Benthuysen, Clara Deser, Thomas L. Frölicher, Nicole S. Lovenduski, Dillon J. Amaya, Natacha Le Grix, Tongtong Xu, Juliet Hermes, Neil J. Holbrook, Cristian Martinez-Villalobos, Simona Masina, Mathew Koll Roxy, Amandine Schaeffer, Robert W. Schlegel, Kathryn E. Smith, Chunzai Wang","doi":"10.1038/s43247-024-01806-9","DOIUrl":null,"url":null,"abstract":"Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate. Improved understanding of marine heatwave predictability and impacts requires analysis of these extremes at full ocean depth, using models and observations capturing their key drivers at the relevant scales, according to a broad literature review.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-17"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01806-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01806-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate. Improved understanding of marine heatwave predictability and impacts requires analysis of these extremes at full ocean depth, using models and observations capturing their key drivers at the relevant scales, according to a broad literature review.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不断变化的气候中的海洋热浪全球概览
海洋热浪对世界海洋大片区域的海洋生态系统产生了深远影响,因此需要更好地了解其动态和可预测性。在此,我们认真回顾了这一活跃研究领域最近取得的实质性进展,包括探索这些极端现象的三维结构和演变、其驱动因素、与海洋和陆地上其他极端现象的联系、未来预测以及对其可预测性和当前预测技能的评估。为了在预测和预报海洋热浪及其影响方面取得进展,需要对整个海洋深度和相关时空尺度上的这些极端现象有更全面的机理认识,同时还需要能在这些尺度上真实捕捉主导机理的模式。持续的观测系统以及可快速部署的测量平台,对于实现全面的事件特征描述,同时记录这些极端事件的演变性质及其在不断变化的气候中的影响至关重要。根据广泛的文献综述,要更好地了解海洋热浪的可预测性及其影响,需要在整个海洋深度对这些极端事件进行分析,并利用模型和观测在相关尺度上捕捉其关键驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Carbon dioxide emissions from industrial processes and product use are a non-ignorable factor in China’ s mitigation eDNA offers opportunities for improved biodiversity monitoring within forest carbon markets Weakening of subsurface ocean temperature seasonality over the past four decades Mediterranean marine heatwaves intensify in the presence of concurrent atmospheric heatwaves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1