Daniel Toledo, Pascal Rannou, Victor Apéstigue, Raul Rodriguez-Veloso, Ignacio Arruego, German Martínez, Leslie Tamppari, Asier Munguira, Ralph Lorenz, Aurélien Stcherbinine, Franck Montmessin, Agustin Sanchez-Lavega, Priya Patel, Michael Smith, Mark Lemmon, Alvaro Vicente-Retortillo, Claire Newman, Daniel Viudez-Moreiras, Ricardo Hueso, Tanguy Bertrand, Jorge Pla-Garcia, Margarita Yela, Manuel de la Torre Juarez, Jose Antonio Rodriguez-Manfredi
{"title":"Drying of the Martian mesosphere during aphelion induced by lower temperatures","authors":"Daniel Toledo, Pascal Rannou, Victor Apéstigue, Raul Rodriguez-Veloso, Ignacio Arruego, German Martínez, Leslie Tamppari, Asier Munguira, Ralph Lorenz, Aurélien Stcherbinine, Franck Montmessin, Agustin Sanchez-Lavega, Priya Patel, Michael Smith, Mark Lemmon, Alvaro Vicente-Retortillo, Claire Newman, Daniel Viudez-Moreiras, Ricardo Hueso, Tanguy Bertrand, Jorge Pla-Garcia, Margarita Yela, Manuel de la Torre Juarez, Jose Antonio Rodriguez-Manfredi","doi":"10.1038/s43247-024-01878-7","DOIUrl":null,"url":null,"abstract":"The formation of water ice clouds or hazes on Mars imposes substantial limitations on the vertical transport of water into the middle-upper atmosphere, impacting the planet’s hydrogen loss. Recent observations made by the Mars Environmental Dynamics Analyzer instrument onboard Mars 2020 Perseverance rover have shown a marked decline in water ice abundance within the mesosphere (above 35-40 km) when Mars is near its aphelion (near the northern summer solstice), notably occurring during solar longitudes (Ls) between Ls 70∘ and 80∘. Orbital observations around the same latitudes indicate that temperatures between ~ 30-40 km reach a minimum during the same period. Using cloud microphysics simulations, we demonstrate that this decrease in temperature effectively increases the amount of water cold-trapped at those altitudes, confining water ice condensation to lower altitudes. Similarly, the reinforcement of the cold trap induced by the lower temperatures results in significant reductions in the water vapor mixing ratio above 35–40 km, explaining the confinement of water vapor observed around aphelion from orbiters. Low atmospheric temperatures during the Martian aphelion freeze water ice in the troposphere which is then cold trapped and unable to transit up into the mesosphere, according to a radiative transfer model and cloud microphysics simulations","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01878-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01878-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of water ice clouds or hazes on Mars imposes substantial limitations on the vertical transport of water into the middle-upper atmosphere, impacting the planet’s hydrogen loss. Recent observations made by the Mars Environmental Dynamics Analyzer instrument onboard Mars 2020 Perseverance rover have shown a marked decline in water ice abundance within the mesosphere (above 35-40 km) when Mars is near its aphelion (near the northern summer solstice), notably occurring during solar longitudes (Ls) between Ls 70∘ and 80∘. Orbital observations around the same latitudes indicate that temperatures between ~ 30-40 km reach a minimum during the same period. Using cloud microphysics simulations, we demonstrate that this decrease in temperature effectively increases the amount of water cold-trapped at those altitudes, confining water ice condensation to lower altitudes. Similarly, the reinforcement of the cold trap induced by the lower temperatures results in significant reductions in the water vapor mixing ratio above 35–40 km, explaining the confinement of water vapor observed around aphelion from orbiters. Low atmospheric temperatures during the Martian aphelion freeze water ice in the troposphere which is then cold trapped and unable to transit up into the mesosphere, according to a radiative transfer model and cloud microphysics simulations
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.